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We investigate the ensemble averaged evolution of N-electron systems dynami-
cally coupled to a statistical environment. The electrons are characterized by
their spatial and by their spin properties. While the Hilbert space for single
electrons is given by the tensor product of the Hilbert spaces associated with
both properties, the corresponding Hilbert space for N-electron systems cannot
be factorized. Consequently, quantum correlations between spatial and spin
properties become extremely important. We assume that the evolution of the
spin properties is controlled by spin-orbit interaction and that the spatial prop-
erties take the part of a bath held near some equilibrium. This description is
appropriate for magnetic systems where the electronic states near the ground
state correspond to different spin configurations, whereas electronic states with
large excitation energies belong to different spatial-orbital configurations. In
order to determine the coarse grained evolution of the spin properties, we have
to know the evolution of the N-electron system over time intervals larger than
the bath-correlation time. This is obtained from the first- and second-order
contributions in the interaction picture. We show that, in spite of the strong
quantum correlations between spin properties and spatial properties, the coarse
grained statistical evolution of the electronic spin properties may be described
by a set of coupled master equations.
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1. INTRODUCTION

The description of the evolution of quantum systems interacting with a
statistical environment is a rather challenging theoretical problem. This is



particularly true, if the system is formed by indistinguishable particles and
if only the evolution of certain selected degrees of freedom of the system is
of interest, whereas the remaining degrees of freedom constitute the statis-
tical environment. Such a situation is encountered, if one considers the
evolution of the electronic spins in an ensemble of electrons, where the
spatial degrees of freedom play the role of the statistical environment
or eventually of the bath. This kind of approach would be adequate to
describe the magnetic properties of a molecule or cluster, which are deter-
mined by the electronic spins. In these systems, the direct interaction
between the nuclei and the electronic spins is in general negligible, so that
the evolution of the electron spins is driven by spin-orbit coupling and by
external magnetic fields. We may thus relate the bath directly with the
spatial degrees of freedom. Dealing with such a problem, the principal dif-
ficulty to cope with is due to the presence of strong quantum correlations
between the considered degrees of freedom and the statistical environment.
This becomes most evident for the above example. In this case, the
quantum correlations between the electronic spins and the orbital degrees
of freedom are due to the fermionic character of the electrons. The pre-
sently considered situation is thus completely different from the conven-
tional quantum statistical approach to the evolution of fermionic systems,
where bath and evolving physical system correspond to subsystems of the
physical system, both being associated with different particles. In this case,
the states constituting the statistical ensemble may in a first approximation
be assumed to be quantically uncorrelated with the bath subsystem (see,
e.g., ref. 1). In the present article we will show that, in spite of the above-
mentioned problems, the coarse grained evolution of a sub-ensemble of
degrees of freedom in a fermionic system may still be described in terms of
master equations. For our convenience, we will in the following refer to the
chosen degrees of freedom as a subsystem, thus generalizing the usual
notion of this term.

Open quantum systems have been the object of intense theoretical
research since the early beginnings of quantum mechanics. The fundamen-
tal concept of density matrices allowing for a statistical description of
quantum systems was already introduced in the early thirties of the last
century. (2, 3) Different methods have been proposed to study the evolu-
tion of subsystems embedded in their environment. The path-integral
method, (4–6) which has become popular during the last 15 years, offers a
practical scheme for the calculation of density matrices describing such
subsystems. (7, 8) Considering the particular problem of nuclear-spin relaxa-
tion in a solid, Bloch, Wangsness, and Redfield have developed a pheno-
menological approach, in which the coarse grained evolution of the
reduced density matrix associated with the nuclear spin subsystem is
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governed by a master equation of Markovian type. (9–11) Based on the same
ideas, similar methods have been worked out later on to describe dissipa-
tion phenomena in quantum optics. (12, 13) The coarse grained density matrix,
which is the central quantity in these approaches, satisfies the von Neumann
conditions of hermiticity and trace preservation, but not that of positivity.
Thus, strictly speaking, it is no longer a density matrix. It is important to
note that in spite of this it allows a correct description of the coarse grained
evolution of observables characterizing the considered subsystem. More
recently, it was shown that the evolution of the reduced density matrix
associated with a subsystem can be described in a way that the latter obeys
strictly all the von Neumann conditions at all times. (14–23) In the limit of
weak interaction and correspondingly long time scales, the evolution of the
density matrix describing the quantum mechanical subsystem becomes again
strictly Markovian leading to a quantum dynamical semigroup.(15, 17–23) This
approach was generalized later on. In fact, a Markovian evolution of an
open quantum system weakly interacting with a bath subsystem is expected
on time scales for which memory effects can be neglected. (22, 23) The most
general form of a generator corresponding to a Markovian evolution of the
density matrix of the subsystem has been given by Lindblad. (16) The results
presented in refs. 14–23 are very important, since they ensure that a
Markovian evolution of a finite subsystem is compatible with a quantum
statistical description of the full system. They offer a more profound jus-
tification of the physical hypotheses underlying the Bloch–Wangsness–
Redfield approach. Thus, for practical applications, both methods can be
considered to be equivalent.

Presently we will adopt the phenomenological approach of refs. 9–13,
which not only is physically more transparent, but it is also more adequate
to deal with our particular situation. In fact, internal and spatial degrees of
freedom of our fermionic system being associated with the same particles, it
is impossible to follow directly the approach of refs. 15, and 17–23, and to
perform the thermodynamic limit for the spatial degrees of freedom con-
stituting the bath subsystem without changing the subsystem associated
with the internal degrees of freedom at the same time. This does of course
not mean that a description of the evolution of the bathed subsystem in
terms of density matrices rather than coarse grained density matrices is
principally impossible.

The master equations for the evolution of the subsystem are obtained
under certain additional assumptions, which are physically equivalent to
the ones invoked in the standard approach. In particular, we have to
assume that the internal dynamics of the chosen subsystem is sufficiently
slow with respect to the memory time of the bath, which depends in par-
ticular on its coupling to the further environment. This requirement is

Coherent and Dissipative Spin Dynamics in N-Electron Systems 363



usually satisfied for weakly excited magnetic systems, where the electronic
spin-relaxation times for temperatures of the order of the Curie tempera-
ture are by two to three orders of magnitude larger than the typical times
for electronic energy relaxation due to electron-phonon coupling. (24–26) We
thus expect that the here proposed approach is a good starting point for
the understanding of the relaxation dynamics of superparamagnetic clus-
ters (27) and of individual single-domain ferromagnetic particles. (28, 29)

The present work is divided into two main parts. In Section 2 we
develop the approach for arbitrary fermions. The specific case of
N-electron systems is discussed in Section 3. Our approach relies heavily on
the theory of representations of the permutation group SN. For readers
who are not familiar with this subject we give a list of some recommend-
able books on this subject in refs. 30–37.

The general mathematical framework is established in Section 2.1,
where we introduce the Hilbert space that describes the spatial and the
internal properties of the N-fermion system, the partial Hamiltonians con-
nected with the spatial and the internal dynamical properties of the system,
and the interaction Hamiltonian. We start from the Hilbert space H that is
given by the tensor product of the N one-particle Hilbert spaces or, alter-
natively, by the tensor product of the Hilbert space associated with the
internal properties and the Hilbert space associated with the spatial prop-
erties of the N fermions. In both Hilbert spaces we introduce an ortho-
normal basis. The basis vectors are chosen to be simultaneously eigen-
vectors of the partial Hamiltonians acting in the respective Hilbert space.
Thus they transform according to the irreducible representations of the
permutation group SN. The physical states of a fermionic system are
described by the rays of the subspace of antisymmetric tensors in H. The
tensor products of the above basis vectors form an orthonormal basis
in H. They are used to construct an orthonormal basis of the subspace of
antisymmetric tensors. The antisymmetry implies that the two basis vectors
involved in the tensor products, which are associated with the internal and
the spatial degrees of freedom, must transform according to dual irreduc-
ible representations of the permutation group SN.

Our principal aim being to reveal the interplay between quantum cor-
relations and dynamical coupling, it is crucial to decompose the interaction
Hamiltonian in a way that allows us to follow its action in the Hilbert
spaces associated with the internal and the spatial properties. This is also
done in Section 2.1. The procedure is similar to the above construction of
the fermionic Hilbert space. In a first step, we introduce a basis in the
vector space of linear operators acting in the Hilbert space associated with
the internal properties. Similarly, we introduce a basis in the vector space
of linear operators acting in the Hilbert space associated with the spatial
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properties. The chosen basis vectors transform as irreducible tensor opera-
tors under the action of the permutation group SN. In a second step, we use
these basis vectors to construct an operator basis acting in H. The result-
ing basis is given by the tensor products of the basis operators obtained in
the first step, where the two operators act in different spaces. The interac-
tion Hamiltonian is then written as a linear combination of these basis
operators. It must be invariant under the action of the permutation group SN.
This implies that the basis vectors correspond to tensor products, where
both operators transform according to the same irreducible representation
of the permutation group SN.

In Section 2.2, we discuss the properties of the density matrix, which
gives access to the statistical properties of the ensemble. We further intro-
duce the relevant partial trace operations, which correspond to projections
of the density matrix describing the whole system onto the spatial or onto
the spin properties. These operations are discussed in detail in the following
Sections 2.3 and 2.4. In Section 2.3 we consider first the hypothetical
situation of statistically uncorrelated subsystems. The case of correlated
subsystems is discussed in Section 2.4.

In order to reveal the effects of the dynamical interaction, it is indi-
cated to adopt the interaction picture rather than the Schrödinger picture
used in Sections 2.2 to 2.4. In Section 2.5, we therefore restate our preced-
ing results in the interaction picture. We then derive the evolution of the
N-fermion system during a time interval Dt in Section 2.6. Assuming weak
dynamical coupling and weak statistical correlation between the internal
and the spatial properties, the evolution is described up to second-order in
the dynamical interaction.

Knowing the evolution over a finite time interval, we come back to
our actual problem and determine the statistical evolution of the internal
properties of the fermions. This is done in Sections 2.7 and 2.8. Here we
assume that the spatial degrees of freedom of the fermions constitute the
bath, which fluctuates around some statistical equilibrium. We define
appropriate correlation functions, which take care of the fact that, due to
the interaction of the bath with the environment, the fluctuations become
uncorrelated for times exceeding a given correlation time. This loss of
memory is crucial to avoid the appearance of Poincaré cycles. (38) In Sec-
tion 2.9 we make the additional assumption that the bath-correlation time
is much smaller than the typical dynamical time scale characterizing the
dynamics of the internal properties. This allows us to describe the coarse
grained evolution by a set of master equations. The particular structure of
these equations is discussed in Section 2.10.

In Section 3 we specify our approach for the case of N-electron
systems, where the internal properties of the fermions are given by the
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electron spins. In this situation, the total spin S, besides determining the
operator of the spatial rotations, defines also the isotypic subspaces with
respect to the action of the permutation group SN. This feature allows us
to construct an explicit basis in the Hilbert space associated with the
spin properties. The spin-orbit like interaction Hamiltonian defining the
dynamical interaction between spin properties and spatial properties is
discussed in Sections 3.1 to 3.3. In Section 3.4 we show that the first-order
interactions between the spin properties and the bath lead to a polarizaton
of the spin subsystem. The master equations describing the evolution of the
spin properties are presented in Section 3.5. Our final conclusions are
drawn in Section 4.

2. GENERAL N-FERMION SYSTEMS

2.1. Mathematical Framework

We consider a system of N fermions. The Hilbert space describing
such a system, which will be called HA+B for reasons that will become clear
later, may be constructed from the Hilbert space Hfermion describing the
properties of a single fermion. It is given by the subspace of the antisym-
metric tensors of H — Hé N

fermion. Thus, to obtain HA+B, we have first to
consider the natural action of the permutation group SN on H, which is
specified by the unitary operators U(s), s ¥ SN. In order to define these
operators U(s), we choose a basis set of orthonormal vectors |nP, n ¥ N in
Hfermion. Then |n1,..., nNP — |n1P é |n2P é · · · é |nNP with n1, n2,..., nN ¥ N is
a basis of orthonormal vectors in H. The action of SN on H is described
by

U(s) |n1,..., nNP=|ns − 1(1),..., ns − 1(N)P, -n1,..., nN ¥ N, (2.1.1)

which implies

U(s1) U(s2)=U(s1s2), -s1, s2 ¥ SN. (2.1.2)

Thus, the correspondence s W U(s) constitutes a unitary representation of
SN in the group of the automorphisms of H.

The Hilbert space HA+B describing the N-fermion system is

HA+B=P[1N]H, (2.1.3)

where

P[1N]=
1

N!
C

s ¥ SN

s(s) U(s) (2.1.4)
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Fig. 1. The diverse considered subspaces of the Hilbert space H=HA é HB. The corre-
sponding orthogonal projection operators are defined by the expressions (2.1.4), (2.1.20) and
its correspondent, and (2.6.9).

is the orthogonal projection operator of H onto the subspace of antisym-
metric tensors (see Fig. 1). The symbol s(s) ¥ {+1, −1} denotes the signa-
ture of the permutation s of SN, and we have

s(s1) s(s2)=s(s1s2), -s1, s2 ¥ SN. (2.1.5)

In the following we label the different types of the irreducible representa-
tions of SN by l. The dimension of the irreducible representations of type l

will be denoted dl. The set of all types of irreducible representations will be
denoted L. It may be identified by the set of partitions of N. Then each
type l is labeled by p [ N strictly positive integers l i, i=1,..., p such that

l1 \ l2 \ · · · \ lp > 0 with l1+l2+ · · · +lp=N. (2.1.6)

The partitions are represented graphically by the so-called Young diagrams
in which boxes are arranged in rows and columns with l i boxes in the ith
row. (30–33, 37)

For example, the symbol [1N]=[1, 1,..., 1] corresponds to a column
of N boxes. It denotes the type of the one-dimensional (irreducible) repre-
sentation provided by the mapping SN ¦ s W s(s). In Eqs. (2.1.3) and
(2.1.4), the symbol [1N] means that P[1N] projects H onto a subspace
carrying irreducible representations of this type. In other words, HA+B is
the isotypic component of type [1N] of H with respect to the representa-
tion U, i.e.,

U(s) |kP=s(s) |kP, -s ¥ SN and |kP ¥ HA+B. (2.1.7)
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In the following we suppose that each fermion possesses spatial as well
as internal properties being compatible which each other. In this case, the
single fermion is described by the Hilbert-space-tensor product

Hfermion=Hinternal é Hspatial, (2.1.8)

where Hspatial and Hinternal describe the spatial and the internal properties of
the fermion, respectively. For example, in the particular case of an electron,
Hspatial is given by L2(R3, d3x), and Hinternal=C2 describes the internal
properties associated with the spin 1/2. More generally, for massive fer-
mions with spin S the subspace Hinternal would be given by (C2S+1).

With Eq. (2.1.8), we obtain for the N-fermion system

H=HA é HB with HA=Hé N
internal, HB=Hé N

spatial. (2.1.9)

Accordingly, the unitary representation U(s) of SN in H decomposes in HA

and HB, so that

U(s)=UA(s) é UB(s), -s ¥ SN. (2.1.10)

Any observable of the system may be described by a self-adjoint
operator O, which necessarily commutes with the representation U of SN in
the full space H,

[O, U(s)]=0, -s ¥ SN. (2.1.11)

An observable of the subsystem A is described by an operator of the form
OA é 1B, with a self-adjoint operator OA acting in HA. OA commutes with
the action of SN in HA, which implies

[OA, UA(s)]=0, -s ¥ SN. (2.1.12)

Similarly, an observable of the subsystem B is described by an operator of
the form 1A é OB with

[OB, UB(s)]=0, -s ¥ SN. (2.1.13)

In the following we assume that the dynamical evolution of the system is
determined by a time-independent Hamiltonian of the form

H=HA é 1B+1A é HB+Hint, (2.1.14)

where the Hamiltonians HA and HB govern the free evolution of the
respective subsystems A and B. The term Hint describes the interaction
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between the two subsystems. The operators HA, HB, and Hint satisfy the
commutation relations

[HA, UA(s)]=0, -s ¥ SN, (2.1.15)

[HB, UB(s)]=0, -s ¥ SN, (2.1.16)

[Hint, U(s)]=0, -s ¥ SN. (2.1.17)

For the following it is convenient to introduce orthonormal basis sets in
HA and HB, which are associated with the representations UA and UB of the
group SN. The vectors forming such an orthonormal basis set in HA will be
denoted |a, l, iP. The symbol l ¥ L labels the different types of the irreduc-
ible components of UA, and i=1,..., dl. The index a runs from 1 to nl

A,
where nl

A denotes the multiplicity of the irreducible components of type l.
To get rid of the non-contributing irreducible representations, we define the
subset LA … L

LA={l ¥ L | nl
A > 0}. (2.1.18)

The subset of vectors {|a, l, iP, i=1,..., dl} generates an invariant sub-
space of HA carrying an irreducible representation of SN of type l. Except
for the trivial case of a one-dimensional space HA, this basis set is not
uniquely determined. It can be chosen such that the vectors |a, l, iP trans-
form as

UA(s) |a, l, kP= C
dl

i=1
|a, l, iP dl

i k(s) (2.1.19)

for all s ¥ SN, l ¥ LA, and a=1,..., nl
A. In this relation, dl

ik(s), s ¥ SN,
i, k=1,..., dl, denote the matrix elements of an irreducible representation
of SN of type l chosen once and for all in the class of equivalence of the
irreducible representations of SN of this type. Such an irreducible represen-
tation is usually referred to as ‘‘standard representation’’ of type l. In the
case of the group SN, this representation can be chosen such that the matrix
elements dl

ik(s) are real. (39) In order to avoid any confusion, we will
nevertheless quote the group theoretical results in their general formulation
without using this feature.

According to Eq. (2.1.15) the basis vectors associated with the repre-
sentation UA may be chosen to be simultaneously eigenvectors of HA. For
an explicit construction of the basis, we introduce the operators (40)

P l
A ik=

dl

N!
C

s ¥ SN

dl
ik(s)a UA(s) (2.1.20)

Coherent and Dissipative Spin Dynamics in N-Electron Systems 369



for l ¥ LA and i, k=1,..., dl. For i ] k these operators are partially iso-
metric, otherwise they are commuting orthogonal projectors providing a
decomposition of the Hilbert space HA into orthogonal subspaces (see also
Fig. 1). From the theory of linear complex representations of finite groups
the operators P l

A ik are known to satisfy the relations

Pl †
A ik=Pl

A ki,

Pl
A ijP

lŒ

A kl=dllŒdjkPl
A il.

(2.1.21)

The operator

Pl
A — C

dl

i=1
Pl

A ii=
dl

N!
C

s ¥ SN

ql(s)a UA(s) (2.1.22)

is the projector of HA onto its isotypic component of type l. The symbol
ql(s) denotes the character of the irreducible representation of type l, i.e.,

ql(s)= C
dl

i=1
dl

ii(s). (2.1.23)

According to Eq. (2.1.15) the operators Pl
A ik and HA commute, i.e.,

[HA, Pl
A ik]=0, -l ¥ LA and -i, k=1,..., dl. (2.1.24)

From Eq. (2.1.19) it follows that

P l
A ik |a, l, kP=|a, l, iP. (2.1.25)

Thus, starting from one of the eigenvectors of HA with the eigenvalue El
a

associated with an irreducible representation of type l, the other dl − 1
eigenvectors within the same subspace and with the same energy eigenvalue
are obtained from

Pl
A k1 |a, l, 1P=|a, l, kP, -k. (2.1.26)

They satisfy Eq. (2.1.19), as well as

HA |a, l, kP=El
a |a, l, kP, -k, (2.1.27)

assuming the spectrum of the operator HA to be discrete. The degeneracy
of the eigenvalue El

a is at least equal to dl.
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The B subsystem is described in the same manner. The basis vectors of
HB are denoted |b, l, iP. The subset LB

LB={l ¥ L | nl
B > 0} (2.1.28)

selects the type of irreducible representations of SN carried by HB. The
basis vectors |b, l, iP, l ¥ LB, with i=1,..., dl and b=1,..., nl

B, satisfy the
relations

UB(s) |b, l, kP= C
dl

i=1
|b, l, iP dl

i k(s), -s ¥ SN (2.1.29)

and

HB |b, l, kP=El
b |b, l, kP, -k. (2.1.30)

The tensors

|a, l, kP é |b, m, jP l ¥ LA, m ¥ LB (2.1.31)

form an orthonormal basis of the Hilbert space H=HA é HB. The fer-
mionic character of the system implies that the physical states are described
by antisymmetric tensors |kP ¥ HA+B … H, i.e.,

U(s) |kP=s(s) |kP, -s ¥ SN. (2.1.32)

We therefore have to find the linear combinations of the basis vectors
(2.1.31) obeying the antisymmetry condition (2.1.32) and thus belonging to
the subspace HA+B. For fixed l, a and m, b a non-zero vector can only be
obtained if and only if the irreducible antisymmetric representation
(denoted r=[1N]) has a non-zero multiplicity in the decomposition

D (l) é D (m) ’ Â
r ¥ L

arD (r). (2.1.33)

Due to the fact that the representation of type [1N] is one-dimensional, the
tensor product with an irreducible representation of type l is itself irreduc-
ible. Using the orthogonality relation for the characters of the irreducible
representations (30–37) we get

a[1N]=
1

N!
C

s ¥ SN

q
[1N]

(s)a q
l
(s) q

m
(s)=˛1 if m=l̃

0 otherwise.
(2.1.34)
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Here l̃ stands for the type of representation that is dual with respect to l.
We recall that there is a one-to-one correspondence between the different
Young diagrams specifying the partitions of the integer N, and the irre-
ducible representations of the SN group. The dual representation corre-
sponds to the transposed Young diagram, which is obtained after exchan-
ging lines and columns of the Young scheme associated with the reference
representation. According to Eq. (2.1.34), the linear combination of tensors
(2.1.31) with fixed l ¥ LA, a and m ¥ LB, b carries a one-dimensional sub-
space satisfying the condition (2.1.32) if and only if l̃=m ¥ LB. In other
words, only the non-zero linear combination

|a, b, lP — C
dl

i, k=1
cl l̃ [1N]

i k 1 |a, l, iP é |b, l̃, kP (2.1.35)

describes a physical state and only one. In this expression cl l̃ [1N]
i k 1 stands for

the Clebsch–Gordan coefficients associated with the isotypic components
of [1N] type in the tensor product representation D (l) é D (l̃). These coeffi-
cients can be supposed to be real since the standard irreducible represen-
tations are real. Note also that dl and dl̃ are always equal, and that the
resulting vector |a, b, lP is non-zero if and only if l ¥ LAB, with

LAB={l | l ¥ LA and l̃ ¥ LB}. (2.1.36)

Finally, it is easy to verify that the vectors |a, b, lP, l ¥ LAB, a=
1,..., nl

A, and b=1,..., n l̃
B constitute an orthonormalized basis set of the

Hilbert space HA+B describing the composed system A+B, i.e., we have

OaŒ, bŒ, lŒ | a, b, lP=daŒadbŒbdlŒl. (2.1.37)

We will also use the relation

C
dl

i, k=1
cl l̃ [1N]a

i k 1 cl l̃ [1N]
i k 1 =1, (2.1.38)

which follows from the fact that the Clebsch–Gordan coefficients are
matrix elements of a unitary (orthogonal) transformation.

Following essentially the same procedure, we can also decompose the
interaction Hamiltonian into a linear combination of tensor products of
operators acting in HA and HB. Let L(HA) be the vector space of the
linear operators acting in HA supplied with the Hilbert–Schmidt scalar
product OOA | O −

AP=Tr(O†
AO −

A). Consider the linear mapping

UA(s): L(HA) QL(HA), s ¥ SN (2.1.39)

372 Reuse et al.



defined by the correspondence

L(HA) ¦ OA W UA(s) OAUA(s)−1. (2.1.40)

The operator UA(s) is unitary relatively to the Hilbert–Schmidt scalar
product in L(HA). The correspondence

SN ¦ s WUA(s) (2.1.41)

yields a unitary representation of SN in the space of linear operators acting
in L(HA). We thus can choose an orthogonal basis in L(HA) associated to
this last representation. Let Al

ai, l ¥ L, i=1,..., dl and a=1,..., Nl
A be the

basis vectors, where Nl
A stands for the multiplicity of the irreducible repre-

sentation of type l, and where the index l labels representations with
Nl

A > 0. We define the corresponding subset

LL
A ={l ¥ L | Nl

A > 0}. (2.1.42)

The Al
ai operators transform as irreducible tensor operators, i.e.,

UA(s) Al
ak — UA(s) Al

akUA(s)−1= C
dl

i=1
Al

aid
l
ik(s), -s ¥ SN. (2.1.43)

The matrix elements dl
ik(s) being real for -s ¥ SN, the operators (basis

vectors) Al
ai can be chosen to be self-adjoint operators. Thus we may

assume

(Al
ai)

†=Al
ai. (2.1.44)

The operators Al
ai form a basis of the isotypic component of type l of

L(HA) relatively to the representation UA(s). In accordance with the
expressions (2.1.20) and (2.1.22), the corresponding orthogonal projector
Pl

A of L(HA) onto the isotypic component Ll(HA) of type l is (see Fig. 2)

Pl
A= C

dl

i=1
Pl

A ii (2.1.45)

with

Pl
A ii=

dl

N!
C

s ¥ SN

dl
ii(s)a UA(s).

Coherent and Dissipative Spin Dynamics in N-Electron Systems 373



Fig. 2. The diverse subspaces of the space of linear operators L(H)=L(HA) é L(HB).
The corresponding projection operators are defined by the expression (2.1.45) and its corre-
spondents.

Similar notions can be introduced for the subsystem B as well as for
the full system A+B. Let LL

B be the analog of LL
A for B. In the space of

operators L(HB) we choose a basis of irreducible tensor operators Bl
bk

Bl
bk, l ¥ LL

B , b=1,..., Nl
B, k=1,..., dl. (2.1.46)

Since

L(HA é HB)=L(HA) é L(HB), (2.1.47)

the tensor products Al
ak é Bm

bj, l ¥ LL
A , m ¥ LL

B , etc., constitute an ortho-
normalized basis of linear operators acting in H=HA é HB. In conse-
quence, the interaction Hamiltonian Hint in Eq. (2.1.14) can be decomposed
in a linear combination of operators of the form Al

ak é Bm
bj. We thus have

to determine the non-trivial linear combinations for which the condition
(2.1.17) is satisfied. Note that this condition is equivalent to the affirmation
that Hint is an operator of trivial type [N] for the representation

U(s) — UA(s) é UB(s) (2.1.48)

of SN in L(H). The symbol [N] corresponds to a row of N boxes in the
graphical representation by Young diagrams.

Considering the linear combinations of vectors Al
ak é Bm

bj with l, a and
m, b fixed, it is obvious that the condition (2.1.17) is satisfied if and only if
the irreducible representation of trivial type [N] appears with a non-zero
multiplicity in the decomposition

D (l) é D (m) ’ Â
r ¥ L

arD (r), (2.1.49)
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or in other words, if a[N] > 0. Since the characters ql(s) (2.1.23) of the
irreducible representations are always real and since also q[N](s)=1,
-s ¥ SN, the orthogonality relations for the characters of the irreducible
representations (41) imply that

a[N]=
1

N!
C

s ¥ SN

q
[N]

(s)a q
l
(s) q

m
(s)=dlm. (2.1.50)

The linear combination corresponding to the decomposition is unique. It
follows that the interaction Hamiltonian Hint can always be written as a
linear combination of the operators

Hl
ab= C

dl

k, j=1
cl l [N]

k j 1 Al
ak é Bl

bj (2.1.51)

with

l ¥ LL
A 5 LL

B — LL
AB. (2.1.52)

We further note that

cl l [N]
k j 1 =

1

`dl

dkj. (2.1.53)

The operators Hl
ab are self-adjoint. It can easily be verified that they con-

stitute an orthogonal basis for the isotypic component of trivial type of
L(H) for the representation U(s), -s ¥ SN, which is denoted Lo(H). Thus
we have

U(s) Hl
ab — U(s) Hl

abU(s)−1=Hl
ab, (2.1.54)

(Hl
ab)†=Hl

ab, (2.1.55)

and the most general form of the interaction Hamiltonian Hint can be
written

Hint= C
l ¥ L

L
AB

C
N l

A

a=1
C
N l

B

b=1
gl

abHl
ab (2.1.56)

with gl
ab ¥ R.
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2.2. Density Matrix and Partial Trace Operations

We are now prepared to describe the physical system under considera-
tion. Let us first note that the corresponding density matrix is an operator
r acting on H, which belongs to the trivial isotypic component Lo(H) of
the space of linear operators L(H), i.e., it remains unchanged under the
action of SN generated by the unitary representation U=UA é UB. More
precisely, the operator r satisfies the conditions

r†=r r2 [ r Tr(r)=1 (2.2.1)

and

[U(s), r]=0, -s ¥ SN. (2.2.2)

Accordingly, r commutes with the projectors

Pl=
dl

N!
C

s ¥ SN

q
l
(s)a U(s), l ¥ L (2.2.3)

of the Hilbert space H onto its isotypic components with respect to the
action of SN on H provided by the unitary representation U. Thus, the
isotypic components are stable under the action of the density matrix r.
This holds in particular for the isotypic component of the type l=[1N],
which corresponds to the Hilbert space describing the physical system
A+B. In fact, taking into account the definition of the density matrix, the
operator r acts non-trivially only on HA+B, i.e.,

Plr=rPl=˛r if l=[1N],
0 otherwise.

(2.2.4)

As a direct consequence of the previous considerations, the mean value
of an observable characterized by a self-adjoint operator O satisfying the
condition (2.1.11) is given by the trace operation

OOP=Tr(rO) (2.2.5)

performed on the whole space H or restricted to HA+B.
For our present purposes we still need a statistical description of the

subsystems. This can be obtained by a natural generalization of the above
relation using a so-called ‘‘partial trace operation.’’ We consider an
observable of the subsystem A. It is characterized by a self-adjoint operator
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OA that commutes with the unitary representation UA of SN in the Hilbert
space HA,

[OA, UA(s)]=0, -s ¥ SN.

These commutation relations impose important restrictions on the values
of the matrix elements of the operator OA taken between the basis vectors
|a, l, iP. Actually, the operator OA commutes with the operators P l

A ik

defined by Eq. (2.1.20), i.e.,

[OA, P l
A ik]=0, -l ¥ LA and -i, k=1,..., dl. (2.2.6)

From Eq. (2.1.25) it follows that Pl
A ik may be used to generate the basis

vectors of HA. One can easily show that the matrix elements
OaŒ, lŒ, iŒ| OA |a, l, iP vanish for l ] lŒ or for i ] iŒ, and that the values of
the matrix elements OaŒ, l, i| OA |a, l, iP do not depend on the index
i=1,..., dl. This may be expressed formally as

OaŒ, lŒ, iŒ| OA |a, l, iP=dlŒldiŒiOaŒ, l, io | OA |a, l, ioP, (2.2.7)

where io denotes an arbitrary integer io=1,..., dl. In the following we
assume io=1. In order to prove Eq. (2.2.7) we use Eqs. (2.1.21) and
(2.1.26), from which we get

OaŒ, lŒ, iŒ| OA |a, l, iP=OaŒ, lŒ, 1| PlŒ

A 1iŒOAPl
A i1 |a, l, 1P

=OaŒ, lŒ, 1| PlŒ

A 1iŒP
l
A i1OA |a, l, 1P

=dlŒldiŒiOaŒ, l, 1| Pl
A 11OA |a, l, 1P

=dlŒldiŒiOaŒ, l, 1| OA |a, l, 1P.

Adopting the notation |a, lP — |a, l, 1P, we have

OA |a, l, iP= C
n l

A

aŒ=1
|aŒ, l, iPOaŒ, l| OA |a, lP, (2.2.8)

and consequently, with Eq. (2.1.35),

(OA é 1B) | a, b, lP= C
n l

A

aŒ=1
|aŒ, b, lPOaŒ, l| OA |a, lP. (2.2.9)
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Following the same arguments, we get a similar relation for the operators
OB commuting with the unitary representation UB of SN in the Hilbert
space HB,

(1A é OB) |a, b, lP= C
n l̃

B

bŒ=1
|a, bŒ, lPObŒ, l̃| OB |b, l̃P. (2.2.10)

The mean value of an observable in the subsystem A defined by a self-
adjoint operator OA is obtained from a ‘‘partial trace’’ operation. Using
Eq. (2.2.9), one gets

OOAP=Tr(r(OA é 1B))

= C
l ¥ LAB

C
n l

A

a=1
C
n l̃

B

b=1
Oa, b, l| r(OA é 1B) |a, b, lP

= C
l ¥ LAB

C
n l

A

a=1
C
n l

A

aŒ=1
rl

A aaŒOaŒ, l| OA |a, lP

with

rl
A aaŒ= C

n l̃
B

b=1
Oa, b, l| r |aŒ, b, lP. (2.2.11)

In order to write the partial trace operation in a more compact form, it is
convenient to introduce some further definitions. First we define the sub-
spaces of HA generated by the vectors |a, lP — |a, l, 1P, l ¥ LA. The sub-
space generated by the vectors |a, lP for fixed l will be denoted Ha l

A, and
the one generated by the full ensemble of vectors by HaA, i.e., we have

Ha l
A=Pl

A 11HA and HaA=Â
l

Ha l
A. (2.2.12)

Next, we introduce the operator TrB, which describes the linear mapping

TrB: Lo(H) WL(HaA) (2.2.13)

defined by

OaŒ, lŒ| TrB(O) |a, lP=dlŒlOl
A aŒa (2.2.14)

with

Ol
A aŒa= C

n l̃
B

b=1
OaŒ, b, l| O |a, b, lP, (2.2.15)
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Fig. 3. Mapping relations for the trivial isotypic components of the spaces of linear opera-
tors acting in H, HA, and HB. The mappings are defined by the relations (2.2.16), (2.2.22),
and their correspondents.

where O ¥ Lo(H), l ¥ LAB, and aŒ, a=1,..., nl
A. For later purposes, we also

introduce three further linear mappings. The first mapping (see Fig. 3)

Trl
B: Lo(H) WL(Ha l

A) (2.2.16)

is defined by

OaŒ, l| Trl
B(O) |a, lP=Ol

A aŒa. (2.2.17)

The second mapping from the trivial isotypic component of L(HA) into
L(HaA)

mA: Lo(HA) WL(HaA) (2.2.18)

is given by

mA: Lo(HA) ¦ OA W PA 11OAPA 11 ¥ L(HaA), (2.2.19)

where PA 11 denotes the projector of HA onto HaA

PA 11= C
l ¥ LA

Pl
A 11. (2.2.20)

Finally, the third mapping

ml
A: Lo(HA) WL(Ha l

A) (2.2.21)

is defined by (see Fig. 3)

ml
A: Lo(HA) ¦ OA W Pl

A 11OAPl
A 11 ¥ L(Ha l

A). (2.2.22)

Obviously, the mappings mA and ml
A are homomorphisms of algebra, i.e.,

for any OA, O −

A ¥ Lo(HA) they satisfy the relations

mA(OAO −

A)=mA(OA) mA(O −

A),

mA(aOA+aŒO −

A)=amA(OA)+aŒmA(O −

A)
(2.2.23)
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and

ml
A(OAO −

A)=ml
A(OA) ml

A(O −

A),

ml
A(aOA+aŒO −

A)=aml
A(OA)+aŒml

A(O −

A)
(2.2.24)

for every l ¥ LA and for arbitrary coefficients a, aŒ. In fact, the mapping mA

corresponds to an isomorphism between Lo(HA) and L(HaA), i.e., there
exists a one-to-one correspondence between operators OA in Lo(HA) and
the associated operators Ál ml

A(OA) in L(HaA). This follows immediately
from Eq. (2.2.7), which shows that the matrix corresponding to an operator
OA ¥ Lo(HA) is block-diagonal with respect to the index l denoting the
types of the representations. In addition, the blocks associated with differ-
ent types l are themselves block-diagonal, where the dl subblocks labeled
by i=1,..., dl are all identically the same. Then, each subblock of type l in
Lo(HA) associated with the operator OA, which is well defined since the
transformation UA(s), s ¥ SN leaves the subspaces Hl

A unchanged, is asso-
ciated with one and only one subblock with indices l and i=1 in L(HaA).
For each irreducible representation of type l we have thus an isomorphism
between Lo(Hl

A) and L(Ha l
A), and consequently also between Lo(HA) and

L(HaA).
The above definitions allow us to keep the mathematical formalism on

a concise level. In particular, the mean values of observables, which are
characterized by the self-adjoint operators OA, become

OOAP=Tr(r̄AŌA) (2.2.25)

where

r̄A=TrB(r) (2.2.26)

and

ŌA=mA(OA). (2.2.27)

Corresponding relations hold for the subsystem B.
We note that the operator r̄A possesses all the mathematical properties

required for a density matrix, i.e.,

r̄†
A=r̄A Tr(r̄A)=1 r̄2

A [ r̄A. (2.2.28)
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The first two properties follow immediately from the definition of r̄A. Here
we will prove the third relation usually referred to as positivity condition,
which may also be expressed as Ok| r̄2

A |kP [ Ok| r̄A |kP, - |kP ¥ HaA. With

Ok| r̄2
A |kP=C

l

C
n l

A

a=1
Ok| r̄A |a, lPOa, l| r̄A |kP

=C
l

C
n l

A

a=1
|Oa, l| r̄A |kP|2

[ Ok| r̄A |kP C
l

C
n l

A

a=1
Oa, l| r̄A |a, lP

=Ok| r̄A |kP, (2.2.29)

where the last two lines are obtained from the Schwarz inequality and from
the second property in Eq. (2.2.28), respectively, we prove the desired
property.

The partial traces (2.2.13), (2.2.14), and (2.2.15) generalize the partial
trace operations employed in the standard quantum statistical approach.
Applied to the density matrix r they provide the statistical state of the
subsystem associated with the internal degrees of freedom of our fermionic
system. In contrast with the standard situation, where the reduction asso-
ciated with the partial trace operation corresponds to the reduction
L(H) WL(HA), we have presently a reduction of Lo(H) onto the sub-
space L(HaA), where HaA is strictly included in HA. This generalization with
respect to the standard case is a consequence of the indistinguishability of
the particles forming the system A+B. It implies the use of a more elabo-
rate mathematical scheme. In the following we will show that the standard
approach of quantum statistics can be generalized to cope with this
situation.

2.3. Statistically Uncorrelated Subsystems

In spite of the fact that quantum correlations are unavoidable for
fermionic systems, it is appropriate to consider first statistically uncorre-
lated subsystems A and B. This corresponds to the assumption that the
density matrix r describing the statistical state of the system takes the form
of a tensor product

r=rA é rB, (2.3.1)
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where rA ¥ Lo(HA) and rB ¥ Lo(HB) are self-adjoint positive operators
satisfying the commutation relations

[rA, UA(s)]=0 and [rB, UB(s)]=0, -s ¥ SN. (2.3.2)

It should be noted that the above form of the density matrix is preserved
during its evolution when the subsystems A and B are not dynamically
coupled, that is to say when Hint — 0 in Eq. (2.1.14). The above definition is
also conform with the theory of the canonical ensemble, since for Hint — 0
we have

r=
1

ZA
e−HA/kB T é

1
ZB

e−HB/kB T

with ZA=Tr(e−HA/kB T) and ZB=Tr(e−HB/kB T), and where T is the system
temperature and kB denotes the Boltzmann constant. The partial trace
TrB(r) of the density matrix (2.3.1) can be easily calculated. From the
definitions (2.2.14), (2.2.15) and the relations (2.2.9), (2.2.10) we obtain

OaŒ, lŒ| TrB(OA é OB) |a, lP

=dlŒl C
n l̃

B

b=1
C
n l

A

aœ=1
C
n l̃

B

bœ=1
OaŒ, b, l | aœ, bœ, lPOaœ, l| OA |a, lPObœ, l̃| OB |b, l̃P

=dlŒlOaŒ, l| OA |a, lP C
n l̃

B

b=1
Ob, l̃| OB |b, l̃P

(— dlŒlOaŒ, l| Trl
B(OA é OB) |a, lP).

This can be summarized as

Ōl
A — Trl

B(OA é OB)=ml
A(OA) Tr(m l̃

B(OB)). (2.3.3)

Exchanging the role of subsystems A and B we obtain similarly

Ō l̃
B — Tr l̃

A(OA é OB)=Tr(ml
A(OA)) m l̃

B(OB). (2.3.4)

For the particular choice OA=rA and OB=rB, the last two equations
become

r̄l
A — Trl

B(rA é rB)=ml
A(rA) Tr(m l̃

B(rB)) (2.3.5)

and

r̄ l̃
B — Tr l̃

A(rA é rB)=m l̃
B(rB) Tr(ml

A(rA)). (2.3.6)
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2.4. Statistically Correlated Subsystems

Even in the case of statistically correlated subsystems A and B, we may
still try to decompose the full density matrix r into parts associated with
the subsystems A and B. We first note that any density matrix r can be
decomposed as

r=rA é rB+gAB. (2.4.1)

This decomposition is of course not unique. In order to get rid of this
ambiguity, we will impose further conditions on rA, rB, and gAB. Motivated
by the preceding description of uncorrelated systems, we attempt the choice

Trl
B(r)=ml

A(rA) Tr(m l̃
B(rB)), (2.4.2)

Tr l̃
A(r)=Tr(ml

A(rA)) m l̃
B(rB), (2.4.3)

and

Trl
B(gAB)=0 and Tr l̃

A(gAB)=0, (2.4.4)

with rA ¥ Lo(HA) and rB ¥ Lo(HB) and for every l ¥ LAB.
In order to prove the existence of the above decomposition, we first

define

pl=Tr(Trl
B(r)) — Tr(Tr l̃

A(r)), (2.4.5)

where 0 [ pl [ 1 is the probability of occurrence of the physical property
corresponding to l. Exploiting the isomorphism between Lo(Hl

A)
(Lo(Hl

B)) and L(Ha l
A) (L(Ha l

B)), we can choose rA (rB) such that

Trl
B(r)=al ml

A(rA), -l ¥ LAB (2.4.6)

Tr l̃
A(r)=bl̃ m l̃

B(rB), -l ¥ LAB (2.4.7)

for arbitrary positive real numbers al, bl̃. Tracing the above equations
(2.4.6), (2.4.7) and using the definition (2.4.5), we find

al=
pl

Tr(ml
A(rA))

, bl̃=
pl

Tr(m l̃
B(rB))

.

Imposing now

albl̃=pl with al > 0, bl̃ > 0,
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we get that Eqs. (2.4.6), (2.4.7) and Eqs. (2.4.2), (2.4.3) become identically
the same. Then Eqs. (2.4.4) are also satisfied. In fact, using Eqs. (2.3.3) and
(2.4.6) we get

Trl
B(gAB)=Trl

B(r − rA é rB)=Trl
B(r) −

al Trl
B(r)

al

=0,

and similarly from Eqs. (2.3.4) and (2.4.7)

Tr l̃
A(gAB)=Tr l̃

A(r − rA é rB)=Tr l̃
A(r) −

bl̃ Tr l̃
A(r)

bl̃

=0,

which proves that the decomposition described by Eqs. (2.4.1)–(2.4.4) is
always possible.

2.5. Interaction Picture

The time dependence of a density matrix r describing the evolution of
the system A+B in the Schrödinger picture is given by

r(t)=e−iHt/(r(0) e iHt/(, (2.5.1)

where the Hamiltonian H has been defined in Eq. (2.1.14). In the inter-
action picture the density matrix reads

rI(t)=e iH0t/(r(t) e−iH0t/(, (2.5.2)

where H0 is the free Hamiltonian

H0=HA é 1B+1A é HB.

The evolution of the density matrix in the interaction picture is obtained by
taking the derivative of the relation (2.5.2) with respect to the time and
using Eq. (2.5.1). We then get

d
dt

rI(t)=
i
(

[rI(t), HI
int(t)], (2.5.3)

where HI
int(t) describes the interaction in the interaction picture

HI
int(t)=e iH0t/(Hinte−iH0t/(. (2.5.4)
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For the following it is useful to introduce TrB(rI(t)) ¥ L(HaA) and
Trl

B(rI(t)) ¥ L(Ha l
A). According to Eqs. (2.2.14) and (2.2.17) we have

OaŒ, lŒ| TrB(rI(t)) |aœ, lœP=dlŒlœOaŒ, lŒ| TrlŒ

B (rI(t)) |aœ, lŒP

=dlŒlœ C
n l̃

B

b=1
OaŒ, b, lŒ| rI(t) |aœ, b, lŒP

=dlŒlœ C
n l̃

B

b=1
OaŒ, b, lŒ| e iH0t/(r(t) e−iH0t/( |aœ, b, lŒP.

From Eqs. (2.1.27), (2.1.30), and (2.1.35) we get

e−iH0t/( |a, b, lP=e−i(El
a+E l̃

b) t/( |a, b, lP,

and consequently

OaŒ, lŒ| TrB(rI(t)) |aœ, lœP=e iElŒ

aŒt/(OaŒ, lŒ| TrB(r(t)) |aœ, lœP e−iElœ

aœt/(.

Defining H̄A as the self-adjoint operator mA(HA) acting in HaA we have

H̄A |a, lP=El
a |a, lP, (2.5.5)

and finally

TrB(rI(t))=e iH̄At/( TrB(r(t)) e−iH̄At/(, (2.5.6)

or equivalently,

r̄I
A(t)=e iH̄At/(r̄A(t) e−iH̄At/(. (2.5.7)

Thus the transformation from the Schrödinger picture to the interaction
picture commutes with the partial trace operation TrB. The same holds also
for the partial trace TrA as well as for Trl

B and Tr l̃
A.

2.6. Statistical Evolution of the Subsystems A and B for Weak

Dynamical Coupling and Weak Statistical Correlation

We will now investigate the time evolution of the density matrix, or
more precisely of Trl

B(r(t)) or Tr l̃
A(r(t)), assuming that the dynamical

coupling Hint (see Eq. (2.1.14)) between the subsystems A and B is weak
and that the mutual statistical correlation given by gAB (see Eq. (2.4.1))
remains small during the considered time interval. Under these conditions
we can describe the variation Trl

B(r(t) − r(t0)) within second-order per-
turbation theory. We note that a first-order approach would lead to a
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rather trivial result, since in this case the most relevant contributions to the
energy transfer between the subsystems would be suppressed. The proposed
second-order approach is of course only valid for sufficiently small
Dt=t − t0. Actually, we will determine the reliable time interval from the
dynamical properties of the subsystems A and B, in agreement with the
hypothesis of weak dynamical coupling. This point will be discussed later
in more detail.

The hypothesis of weak statistical correlations between the subsystems
A and B relies partly on their presupposed weak dynamical coupling. In
fact, our approach is based on the hypothesis that the statistical correlation
between both subsystems is caused solely by their mutual dynamical
interaction. The correlation gAB is supposed to be of first order with respect
to the dynamical interaction Hint. More precisely, we postulate the existence
of a past time t00 with t00 < t0 [ t, at which the two considered subsystems
were statistically uncorrelated. We then assume that the initially uncorre-
lated subsystems start to interact dynamically at time t00.

Integration of Eq. (2.5.3) from t0 to t=t0+Dt yields

rI(t)=rI(t0)+
i
(

F
t

t0

dtŒ[rI(tŒ), HI
int(tŒ)]. (2.6.1)

This equation can be solved by an iteration procedure. Replacing successi-
vely rI(tŒ) on the right-hand side by the above expression (2.6.1), we obtain

rI(t)=rI(t0)+
i
(

F
t

t0

dtŒ[rI(t0), HI
int(tŒ)]

+1 i
(

22

F
t

t0

dtŒ F
tŒ

t0

dtœ[[rI(t0), HI
int(tœ)], HI

int(tŒ)]+ · · · , (2.6.2)

which relates rI(t) to the initial density matrix rI(t0). The density matrix
Trl

B(r(t)), l ¥ LAB, which provides the statistical description of the sub-
system A, becomes

Trl
B(rI(t))=Trl

B(rI(t0))+
i
(

F
t

t0

dtŒ Trl
B([rI(t0), HI

int(tŒ)])

+1 i
(

22

F
t

t0

dtŒ F
tŒ

t0

dtœ Trl
B([[rI(t0), HI

int(tœ)], HI
int(tŒ)])+ · · · .

(2.6.3)

A similar expression can be obtained for Tr l̃
A(r(t)).
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Following our introductory remarks at the beginning of this subsec-
tion, we keep only terms up to second order in Hint. Moreover, in order to
control the degree of correlation between the subsystems, we replace rI(t0)
in expressions (2.6.2) and (2.6.3) by

rI(t0)=rI
A(t0) é rI

B(t0)+gI
AB(t0),

which is the correspondent of Eq. (2.4.1) in the interaction picture.
Furthermore, according to our second hypothesis, we allow only for weak
statistical correlations gI

AB(t) corresponding to the first-order contribution
with respect to the dynamical interaction Hint. Considering the right-hand
side of Eqs. (2.6.2) and (2.6.3), we see that gI

AB(t0) gives rise to a second-
order contribution in the second term, and a third-order contribution in the
third term. Keeping only the terms up to second order, we thus obtain

rI(t)=rI(t0)+
i
(

F
t

t0

dtŒ[rI
A(t0) é rI

B(t0), HI
int(tŒ)]

+1 i
(

22

F
t

t0

dtŒ F
tŒ

t0

dtœ[[rI
A(t0) é rI

B(t0), HI
int(tœ)], HI

int(tŒ)]

+
i
(

F
t

t0

dtŒ[gI
AB(t0), HI

int(tŒ)], (2.6.4)

and consequently

Trl
B(rI(t))=Trl

B(rI(t0))+
i
(

F
t

t0

dtŒ Trl
B([rI

A(t0) é rI
B(t0), HI

int(tŒ)])

+1 i
(

22

F
t

t0

dtŒ F
tŒ

t0

dtœ Trl
B([[rI

A(t0) é rI
B(t0), HI

int(tœ)], HI
int(tŒ)])

+
i
(

F
t

t0

dtŒ Trl
B([gI

AB(t0), HI
int(tŒ)]). (2.6.5)

A similar expression holds for Tr l̃
A(rI(t)).

Now we need an evaluation of gI
AB(t0) limited to the first-order con-

tribution of the interaction Hint. Keeping only the first-order terms in
Eq. (2.6.4), we get

rI
A(t) é rI

B(t)+gI
AB(t)

=rI
A(t0) é rI

B(t0)+gI
AB(t0)+

i
(

F
t

t0

dtŒ[rI
A(t0) é rI

B(t0), HI
int(tŒ)].
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Using our previous assumption that gI
AB(t) vanishes at time t=t00, the

above relation implies

gI
AB(t0)=rI

A(t00) é rI
B(t00) − rI

A(t0) é rI
B(t0)

−
i
(

F
t00

t0

dtŒ[rI
A(t0) é rI

B(t0), HI
int(tŒ)]. (2.6.6)

Insertion of the above expression for gI
AB(t0) into Eq. (2.6.5) yields

Trl
B(rI(t))=Trl

B(rI(t0))+
i
(

F
t

t0

dtŒ Trl
B([rI

A(t0) é rI
B(t0), HI

int(tŒ)])

+1 i
(

22

F
t

t0

dtŒ F
tŒ

t00

dtœ Trl
B([[rI

A(t0) é rI
B(t0), HI

int(tœ)], HI
int(tŒ)])

+
i
(

F
t

t0

dtŒ Trl
B([rI

A(t00) é rI
B(t00) − rI

A(t0) é rI
B(t0), HI

int(tŒ)]).

(2.6.7)

Our aim is to express Trl
B(rI(t)) in terms of the density matrices rI

A(t0) and
rI

B(t0). Thus, we have to reconsider the dependence on rI
A(t00) é rI

B(t00)
appearing in the last integral. We start from the identity

Trl
B([rI

A(t) é rI
B(t), HI

int(tŒ)])=[ml
A(rI

A(t)), Trl
B((1A é rI

B(t)) HI
int(tŒ))],

(2.6.8)

which is obtained from the definition (2.2.17) and the relations (2.2.9) and
(2.2.11) according to

Oa, l| Trl
B((rA é rB) Hint) |aŒ, lP

=C
b

C
aœbœlœ

Oa, b, l| rA é rB |aœ, bœ, lœPOaœ, bœ, lœ| Hint |aŒ, b, lP

=C
b

C
aœbœ

Oa, l| mA(rA) |aœ, lPOb, l̃| mB(rB) |bœ, l̃POaœ, bœ, l| Hint |aŒ, b, lP

=C
aœ

Oa, l| mA(rA) |aœ, lPOaœ, l| Trl
B((1A é rB) Hint) |aŒ, lP,

and the corresponding expression for the reversed order of operators
Hint(rA é rB).
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Let now Ql, l ¥ LAB be the orthogonal projectors of the Hilbert space
HA+B onto the subspaces Hl

A+B, which are generated by the vectors
|a, b, lP for a=1,..., nl

A and b=1,..., n l̃
B (see Fig. 1). We have

Ql= C
n l

A

a=1
C
n l̃

B

b=1
|a, b, lPOa, b, l| (2.6.9)

with

C
l ¥ LAB

Ql=P[1N] and QlQlŒ=dllŒQl, -l, lŒ ¥ LAB. (2.6.10)

The projectors Ql commute with the non-interacting part of the Hamilto-
nian (2.1.14), i.e.,

[Ql, HA é 1B+1A é HB]=0. (2.6.11)

The decomposed interaction Hamiltonian Hint is given by Eqs. (2.1.51) and
(2.1.56). The matrix elements of the operators Hm

ab, acting in the subspace
HA+B generated by the vectors |a, b, lP, l ¥ LAB, can be written as

Oa, b, l| Hm
ab |aŒ, bŒ, lŒP= C

al

c=1
C
bl̃

d=1
hlmlŒ

cd Oa, l|| Am
a ||aŒ, lŒPc Ob, l̃|| Bm

b ||bŒ, l̃ŒPd,
(2.6.12)

where Oa, l|| Am
a ||aŒ, lŒPc and Ob, l̃|| Bm

b ||bŒ, l̃ŒPd denote the reduced matrix
elements of the operators Am

ak and Bm
bl, respectively. The coefficients al and

bl̃ denote the multiplicities of the irreducible representations of types l and
l̃ in the tensor products D (m) é D (lŒ) and D (m) é D (l̃Œ), i.e.,

D (m) é D (lŒ) ’ Â
l

alD (l) (2.6.13)

and

D (m) é D (l̃Œ) ’ Â
l̃

bl̃D (l̃). (2.6.14)

Obviously, we have

bl̃=al, -l ¥ LAB. (2.6.15)
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Equation (2.6.12) is obtained by evaluating the matrix elements of the
irreducible tensor operators Am

ak and Bm
bl using the Wigner–Eckart theorem.

We get

Oa, l, i| Am
ak |aŒ, lŒ, iŒP= C

al

c=1
clŒm l

iŒk (i, c)Oa, l|| Am
a ||aŒ, lŒPc (2.6.16)

and

Ob, l̃, j| Bm
bl |bŒ, l̃Œ, jŒP= C

bl̃

d=1
c l̃Œm l̃

jŒ l (j, d)Ob, l̃|| Bm
b ||bŒ, l̃ŒPd, (2.6.17)

where the coefficients clŒm l
iŒk (i, c) and c l̃Œm l̃

jŒ l (j, d) are the Clebsch–Gordan coeffi-
cients associated with the decompositions (2.6.13) and (2.6.14).

Finally, together with the relation (2.1.35) for the orthonormal basis
vectors in HA+B, we obtain for the real coefficients hlmlŒ

cd in Eq. (2.6.12)

hlmlŒ

cd =hlŒml
cd =

1

`dm

C
dl

i, j=1
C
dlŒ

iŒ, jŒ=1
C
dm

k=1
cl l̃ [1N]

i j 1 clŒ m l
iŒ k (i, c)c

l̃Œ m l̃
jŒ k (j, d)c

lŒ l̃Œ [1N]
iŒ jŒ 1 . (2.6.18)

Making use of the isomorphism between the subspaces Hl
A+B=QlHA+B

and Ha l
A é Ha l̃

B,

Hl
A+B ’ Ha l

A é Ha l̃
B, (2.6.19)

we define the linear operators

AlmlŒ

ca : Ha lŒ

A WHa l
A (2.6.20)

and

B l̃ml̃Œ

db : Ha l̃Œ

B WHa l̃
B (2.6.21)

by

Oa, l| AlmlŒ

ca |aŒ, lŒP=Oa, l|| Am
a ||aŒ, lŒPc (2.6.22)

and

Ob, l̃| B l̃ml̃Œ

db |bŒ, l̃ŒP=Ob, l̃|| Bm
b ||bŒ, l̃ŒPd. (2.6.23)

As can immediately be seen from their definition, they satisfy the relations

(AlmlŒ

ca )†=AlŒml
ca (2.6.24)
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and

(B l̃ml̃Œ

db )†=B l̃Œml̃
db . (2.6.25)

It should be noted that the operators AlmlŒ

ca and B l̃ml̃Œ

db act in the subspaces
HaA and HaB, respectively. This allows us to describe the interaction operator
(2.1.56) in the space Ál ¥ LAB

Ha l
A é Ha l̃

B rather than in HA+B. From
Eq. (2.1.56) and the Definitions (2.6.22) and (2.6.23) we get

HllŒ

int =C
m

C
ab

gm
ab C

al

c=1
C
bl̃

d=1
hlmlŒ

cd AlmlŒ

ca é B l̃ml̃Œ

db , (2.6.26)

which corresponds to

QlHintQlŒ: HlŒ

A+B QHl
A+B.

This form is rather convenient and will be used in the following.
The above definitions can be straightforwardly translated into the

interaction picture. We then have

AI lmlŒ

ca (t)=e iH̄l
At/(AlmlŒ

ca e−iH̄lŒ

A t/( (2.6.27)

and

BI l̃ml̃Œ

db (t)=e iH̄ l̃
Bt/(B l̃ml̃Œ

db e−iH̄ l̃Œ

B t/( (2.6.28)

with

H̄l
A — ml

A(HA) and H̄ l̃
B — m l̃

B(HB), (2.6.29)

and the interaction Hamiltonian (2.6.26) can be expressed in terms of the
block operators

HI llŒ

int (t)=C
m

C
ab

gm
ab C

al

c=1
C
bl̃

d=1
hlmlŒ

cd AI lmlŒ

ca (t) é BI l̃ml̃Œ

db (t). (2.6.30)

In the following we group the index pairs ca and db into one, i.e., we
replace AlmlŒ

ca by AlmlŒ

a and B l̃ml̃Œ

db by B l̃ml̃Œ

b . With this convention Eq. (2.6.30)
becomes

HI llŒ

int (t)=C
m

C
ab

glmlŒ

ab AI lmlŒ

a (t) é BI l̃ml̃Œ

b (t) (2.6.31)

with

glmlŒ

ab =glŒml
ab — gm

abhlmlŒ

cd . (2.6.32)
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Inserting (2.6.31) into Eq. (2.6.8), we get

Trl
B([rI

A(t) é rI
B(t), HI

int(tŒ)])

=C
ma

[ml
A(rI

A(t)), AI lml
a (tŒ)] C

b

glml
ab Tr(m l̃

B(rI
B(t)) BI l̃ml̃

b (tŒ)), (2.6.33)

where we have used the identity

Trl
B((1A é rI

B(t)) HI
int(tŒ))=C

ma

AI lml
a (tŒ) C

b

glml
ab Tr(m l̃

B(rI
B(t)) BI l̃ml̃

b (tŒ)),

which follows directly from the relation (2.3.3). With the corresponding of
relation (2.3.5) in the interaction picture

Tr(m l̃
B(rI

B(t))) ml
A(rI

A(t))=Trl
B(rI(t))=r̄I l

A (t),

Eq. (2.6.33) can be written in the compact form

Trl
B([rI

A(t) é rI
B(t), HI

int(tŒ)])=C
ma

[r̄I l
A (t), AI lml

a (tŒ)] b l̃ml̃
a (t, tŒ).

(2.6.34)

The coefficients

b l̃ml̃
a (t, tŒ)=C

b

glml
ab

Tr(r̄I l̃
B (t) BI l̃ml̃

b (tŒ))

Tr(r̄I l̃
B (t))

(2.6.35)

are real numbers, as can be seen immediately from Eq. (2.6.25).
We now come back to our actual problem, which was the transforma-

tion of expression (2.6.7) for Trl
B(rI(t)). With Eq. (2.6.34) we obtain for

the first-order contribution

r̄I l
A (t)=Trl

B(rI(t))

4 Trl
B(rI(t0))+

i
(

F
t

t0

dtŒ C
ma

[r̄I l
A (t0), AI lml

a (tŒ)] b l̃ml̃
a (t0, tŒ).

(2.6.36)

Similarly, the integrand in the last integral of Eq. (2.6.7) becomes

Trl
B([rI

A(t00) é rI
B(t00) − rI

A(t0) é rI
B(t0), HI

int(tŒ)])

=C
ma

[r̄I l
A (t00), AI lml

a (tŒ)] b l̃ml̃
a (t00, tŒ) − C

ma

[r̄I l
A (t0), AI lml

a (tŒ)] b l̃ml̃
a (t0, tŒ).

(2.6.37)
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Equation (2.6.7) treats the interaction term up to second order. We have
thus to look for a first-order approximation to r̄I l

A (t00). This is obtained by
evaluating Eq. (2.6.36) at t=t00, which yields

r̄I l
A (t00)=r̄I l

A (t0)+
i
(

F
t00

t0

dtœ C
mŒaŒ

[r̄I l
A (t0), AI lmŒl

aŒ (tœ)] b l̃mŒl̃
aŒ (t0, tœ).

(2.6.38)

Inserting this first-order relation into Eq. (2.6.37), we get after integration

i
(

F
t

t0

dtŒ Trl
B([rI

A(t00) é rI
B(t00) − rI

A(t0) é rI
B(t0), HI

int(tŒ)])

=1 i
(

22

F
t

t0

dtŒ C
ma

F
t00

t0

dtœ C
mŒaŒ

[[r̄I l
A (t0), AI lmŒl

aŒ (tœ)], AI lml
a (tŒ)]

× b l̃mŒl̃
aŒ (t0, tœ) b l̃ml̃

a (t00, tŒ)

+
i
(

F
t

t0

dtŒ C
ma

[r̄I l
A (t0), AI lml

a (tŒ)](b l̃ml̃
a (t00, tŒ) − b l̃ml̃

a (t0, tŒ)).
(2.6.39)

In the first term on the right-hand side we can replace b l̃ml̃
a (t00, tŒ) by

b l̃ml̃
a (t0, tŒ), since this change corresponds to a third-order correction in

Eq. (2.6.39).
We now consider the last term in Eq. (2.6.39). With the definitions

(2.6.35) and (2.4.5) we obtain

b l̃ml̃
a (t00, tŒ) − b l̃ml̃

a (t0, tŒ)=C
b

glml
ab Tr 11 r̄I l̃

B (t00)
pl(t00)

−
r̄I l̃

B (t0)
pl(t0)

2 BI l̃ml̃
b (tŒ)2 .

(2.6.40)

Interchanging the roles of the subsystems A and B in Eq. (2.6.38), we get
the first-order expression for the subsystem B

r̄I l̃
B (t00)=r̄I l̃

B (t0)+
i
(

F
t00

t0

dtœ C
mŒbŒ

[r̄I l̃
B (t0), BI l̃mŒl̃

bŒ (tœ)] almŒl
bŒ (t0, tœ), (2.6.41)

where the coefficients alml
b (t, tŒ) are given by the correspondent of

Eq. (2.6.35)

alml
b (t, tŒ)=C

a

glml
ab

Tr(r̄I l
A (t) AI lml

a (tŒ))
Tr(r̄I l

A (t))
. (2.6.42)
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From the definition (2.4.5) of pl and the equivalent of Eq. (2.2.11) for the
subsystem B we find that

pl(t)=Tr(r̄I l̃
B (t)).

Tracing Eq. (2.6.41) and using the fact that the trace over the second term
containing a commutator is zero, we get the first-order relation

pl(t00)=Tr(r̄I l̃
B (t00))=Tr(r̄I l̃

B (t0))=pl(t0).

We may thus rewrite Eq. (2.6.40) as

b l̃ml̃
a (t00, tŒ) − b l̃ml̃

a (t0, tŒ)

=C
b

glml
ab Tr 1 i

(
F

t00

t0

dtœ C
mŒbŒ

almŒl
bŒ (t0, tœ)
pl(t0)

[r̄I l̃
B (t0), BI l̃mŒl̃

bŒ (tœ)] BI l̃ml̃
b (tŒ)2

=
i
(

F
t00

t0

dtœ C
mŒaŒ

(b l̃mŒl̃ml̃
aŒ a (t0, tœ, tŒ) − b l̃ml̃mŒl̃

a aŒ (t0, tŒ, tœ)) almŒ

aŒ (t0, tœ), (2.6.43)

where the coefficients b l̃mr̃mŒl̃
a aŒ (t0, tŒ, tœ) and alm

a (t0, tŒ) are defined as

b l̃mr̃mŒl̃
a aŒ (t0, tŒ, tœ)=C

bbŒ

glmr
ab grmŒl

aŒbŒ

Tr(r̄I l̃
B (t0) BIl̃mr̃

b (tŒ) BIr̃mŒl̃
bŒ (tœ))

Tr(r̄I l̃
B (t0))

(2.6.44)

and

alm
a (t0, tŒ)=

Tr(r̄I l
A (t0) AIlml

a (tŒ))
Tr(r̄I l

A (t0))
. (2.6.45)

Inserting (2.6.43) we get finally for expression (2.6.39)

i
(

F
t

t0

dtŒ Trl
B([rI

A(t00) é rI
B(t00) − rI

A(t0) é rI
B(t0), HI

int(tŒ)])

=1 i
(

22

F
t

t0

dtŒ C
ma

F
t00

t0

dtœ

× C
mŒaŒ

([[r̄I l
A (t0), AIlmŒl

aŒ (tœ)], AIlml
a (tŒ)] b l̃mŒl̃

aŒ (t0, tœ) b l̃ml̃
a (t0, tŒ)

+[r̄I l
A (t0), AIlml

a (tŒ)](b l̃mŒl̃ml̃
aŒ a (t0, tœ, tŒ) − b l̃ml̃mŒl̃

a aŒ (t0, tŒ, tœ)) almŒ

aŒ (t0, tœ)).
(2.6.46)
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We now consider the third term in Eq. (2.6.7), which contains the
commutator expression

Trl
B([[rI

A(t0) é rI
B(t0), HI

int(tœ)], HI
int(tŒ)])

=Trl
B((rI

A(t0) é rI
B(t0)) HI

int(tœ) HI
int(tŒ))

− Trl
B(HI

int(tœ)(rI
A(t0) é rI

B(t0)) HI
int(tŒ))

− Trl
B(HI

int(tŒ)(rI
A(t0) é rI

B(t0)) HI
int(tœ))

+Trl
B(HI

int(tŒ) HI
int(tœ)(rI

A(t0) é rI
B(t0))). (2.6.47)

This relation can still be simplified. As an example, we take the first term
on the right-hand side. According to the definition (2.2.15) of the partial
trace operation, its matrix elements in Ha l

A can be written

Oa, l| Trl
B(rI

A(t0) é rI
B(t0) HI

int(tœ) HI
int(tŒ)) |aŒ, lP

=C
b

C
aœbœ

C
a −−−b −−−r

Oa, b, l| rI
A(t0) é rI

B(t0) |aœ, bœ, lP

×Oaœ, bœ, l| HI
int(tœ) |a −−−, b −−−, rPOa −−−, b −−−, r| HI

int(tŒ) |aŒ, b, lP,

where we have used the fact that rI
A(t0) and rI

B(t0) commute with the
representations UA and UB of SN in HA and HB, respectively. Using
Eqs. (2.1.35), (2.1.37), (2.1.38), and (2.2.7), we obtain

Oa, b, l| rI
A(t0) é rI

B(t0) |aœ, bœ, lP

=Oa, l| ml
A(rI

A(t0)) |aœ, lPOb, l̃| m l̃
B(rI

B(t0)) |bœ, l̃P.

With Eq. (2.6.12), the matrix elements of the interaction Hamiltonian
(2.6.26) become

Oaœ, bœ, l| HI
int(tœ) |a −−−, b −−−, rP

=C
mŒ

C
aŒbŒ

gmŒ

aŒbŒ C
cŒdŒ

hlmŒr
cŒdŒ Oaœ, l|| AImŒ

aŒ (tœ) ||a −−−, rPcŒ Obœ, l̃|| BImŒ

bŒ(tœ) ||b −−−, r̃PdŒ

and

Oa −−−, b −−−, r| HI
int(tŒ) |aŒ, b, lP

=C
m

C
ab

gm
ab C

cd

hrml
cd Oa −−−, r|| AIm

a (tŒ) ||aŒ, lPc Ob −−−, r̃|| BIm
b(tŒ) ||b, l̃Pd.

Coherent and Dissipative Spin Dynamics in N-Electron Systems 395



Altogether, we get for the first term on the right-hand side of (2.6.47)

Trl
B(rI

A(t0) é rI
B(t0) HI

int(tœ) HI
int(tŒ))

=C
r

C
mŒ

C
aŒbŒ

gmŒ

aŒbŒ C
cŒdŒ

hlmŒr
cŒdŒ C

m

C
ab

gm
ab C

cd

hrml
cd

× ml
A(rI

A(t0)) AIlmŒr
cŒaŒ (tœ) AIrml

ca (tŒ) Tr(m l̃
B(rI

B(t0)) BIl̃mŒr̃
dŒbŒ (tœ) BIr̃ml̃

db (tŒ))

where we have used the definitions (2.6.22) and (2.6.23). Adopting the
short-hand notation introduced in Eqs. (2.6.31) and (2.6.32), and remem-
bering that according to Eq. (2.4.2)

ml
A(rI

A(t0))=
r̄I l

A (t0)

Tr(m l̃
B(rI

B(t0)))
,

we obtain

Trl
B(rI

A(t0) é rI
B(t0) HI

int(tœ) HI
int(tŒ))

=C
r

C
mmŒ

C
aaŒ

r̄I l
A (t0) AIlmŒr

aŒ (tœ) AIrml
a (tŒ) b l̃mŒr̃ml̃

aŒ a (t0, tœ, tŒ), (2.6.48)

where the coefficients b l̃mŒr̃ml̃
aŒ a (t0, tœ, tŒ) are defined in Eq. (2.6.44).

The other terms on the right-hand side of Eq. (2.6.47) can be simpli-
fied following the same procedure. With Eqs. (2.6.34), (2.6.46), (2.6.48) and
its correspondents, the partial trace (2.6.7) finally becomes

Trl
B(rI(t))

— r̄I l
A (t) 4 r̄I l

A (t0)+
i
(

F
t

t0

dtŒ C
ma

[r̄I l
A (t0), AIlml

a (tŒ)] b l̃ml̃
a (t0, tŒ)

+1 i
(

22

F
t

t0

dtŒ C
ma

F
t00

t0

dtœ

× C
mŒaŒ

([[r̄I l
A (t0), AIlmŒl

aŒ (tœ)], AIlml
a (tŒ)] b l̃mŒl̃

aŒ (t0, tœ) b l̃ml̃
a (t0, tŒ)

+[r̄I l
A (t0), AIlml

a (tŒ)] almŒ

aŒ (t0, tœ)(b l̃mŒl̃ml̃
aŒ a (t0, tœ, tŒ) − b l̃ml̃mŒl̃

a aŒ (t0, tŒ, tœ)))

+1 i
(

22

F
t

t0

dtŒ C
ma

F
tŒ

t00

dtœ C
mŒaŒ

C
r

(r̄I l
A (t0) AIlmŒr

aŒ (tœ) AIrml
a (tŒ) b l̃mŒr̃ml̃

aŒ a (t0, tœ, tŒ)

− AIlmŒr
aŒ (tœ) r̄I r

A (t0) AIrml
a (tŒ) b r̃ml̃mŒr̃

a aŒ (t0, tŒ, tœ)

− AIlmr
a (tŒ) r̄I r

A (t0) AIrmŒl
aŒ (tœ) b r̃mŒl̃mr̃

aŒ a (t0, tœ, tŒ)

+AIlmr
a (tŒ) AIrmŒl

aŒ (tœ) r̄I l
A (t0) b l̃mr̃mŒl̃

a aŒ (t0, tŒ, tœ)). (2.6.49)
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The above relation describes the time evolution of the subsystem A of a
fermionic system A+B up to second order in the interaction Hint with the
subsystem B. The resulting diagonal blocks r̄I l

A (t), l ¥ LAB of the density
matrix r̄I

A(t) determine the ‘‘statistical state’’ of the subsystem A at time t.
They depend on the initial statistical states of both subsystems at time t0

described by r̄I
A(t0) and r̄I

B(t0), and also on the time t00 at which both sub-
systems were supposed to be statistically uncorrelated. The influence of the
subsystem B on the behavior of the subsystem A enters Eq. (2.6.49) through
the functions b l̃ml̃

a (t0, t) and b l̃mr̃mŒl̃
a aŒ (t0, tŒ, tœ), which depend only on r̄I

B(t0).
Relations similar to (2.6.49) hold also for the density matrix r̄I

B(t).
In this case, the subsystems A and B are exchanged, and the respective
relations can easily be obtained using this formal analogy.

2.7. Statistical Evolution of the Subsystem A for a Subsystem B

Fluctuating around Some Statistical Equilibrium

We consider again the situation discussed in the previous subsection,
where the two dynamically coupled subsystems A and B were supposed to
be only weakly statistically correlated. For the following, it is now impor-
tant to note that even though our description of the evolution of the system
was based on Eq. (2.5.3), which assumes the physical system A+B to be
isolated or closed, the above relation (2.6.49) can be used also in the more
general situation, where the physical system A+B interacts with its envi-
ronment. This follows from the fact that the influence of the rest of the
system on the subsystem A is completely included in the functions
b l̃ml̃

a (t0, t) and b l̃mr̃mŒl̃
a aŒ (t0, tŒ, tœ). Thus, it is only necessary to assume that the

dynamical coupling of the subsystem A to the rest of the system, whether
open or not, is solely determined by the interaction with the subsystem B.
In other words, the subsystem B can be limited to the most important
degrees of freedom in the rest of the system that govern the time evolution
over time intervals compatible with second-order perturbation theory. In
the following we will use Eq. (2.6.49) to study the time evolution in the
subsystem A interacting with an open environment, assuming that the
dynamical coupling of subsystem A with its environment can be described
by the coupling to an adequately chosen finite subsystem B.

We first discuss the statistical evolution of a subsystem A that interacts
with a subsystem B, which is maintained near some statistical equilibrium
but which still fluctuates due to its dynamical coupling with the sub-
system A. Expressed in the Schrödinger picture, the corresponding density
matrix of the subsystem B reads

Tr l̃
A(r(t))=r̄ l̃

B(t)=r̄ l̃ 0
B +dr̄ l̃

B(t), (2.7.1)
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where r̄ l̃ 0
B describes the imposed statistical equilibrium in the subsystem B

with

[r̄ l̃ 0
B , H̄ l̃

B]=0. (2.7.2)

The fluctuations dr̄ l̃
B(t) being generated by the dynamical interaction Hint,

they depend at least in first order on Hint.
Actually, as in Section 2.6, we postulate the absence of fluctuations

at a time t00 preceding the considered time interval from t0 to t, i.e., we
suppose that before the time t00 the system dynamics is described by two
independent and statistically uncorrelated subsystems A and B.

From Eqs. (2.4.1), (2.5.3), and (2.6.34) we find

d
dt

r̄I l
A (t) — Trl

B
1drI(t)

dt
2

=
i
(

Trl
B([rI(t), HI

int(t)])

=
i
(

5r̄I l
A (t), C

ma

b l̃ml̃
a (t, t) AIlml

a (t)6+
i
(

Trl
B([gI

AB(t), HI
int(t)]).

(2.7.3)

In a first rough approximation we will neglect the influence of the fluctua-
tions dr̄I

B(t) on the evolution of the subsystem A. In the same spirit, we will
also neglect the influence of the statistical correlations gI

AB(t). This is
equivalent to a first-order approach with regard to the interaction Hint.
Then, Eq. (2.7.3) simplifies to

d
dt

r̄I l
A (t) 4

i
(

[r̄I l
A (t), H̄I l

A pol(t)], (2.7.4)

where, in accordance with Eq. (2.6.35), we have introduced the operator

H̄I l
A pol(t)=C

m

C
ab

glml
ab b l̃ml̃0

b AIlml
a (t) (2.7.5)

with the coefficients

b l̃ml̃ 0
b =

Tr(r̄ l̃ 0
B BIl̃ml̃

b (t))

Tr(r̄ l̃ 0
B )

=
Tr(r̄ l̃ 0

B B l̃ml̃
b )

Tr(r̄ l̃ 0
B )

. (2.7.6)
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The second equality in the above relation implying the time independence
of b l̃ml̃ 0

b follows from

BIl̃ml̃
b (t)=e i H̄ l̃

Bt/(B l̃ml̃
b e−i H̄ l̃

Bt/(

and the fact that r̄ l̃ 0
B commutes with H̄ l̃

B. Going back to the Schrödinger
picture, this means that, keeping only the lowest-order interaction terms,
the presence of the subsystem B can be described by an additional time-
independent ‘‘external force.’’ In other words, the first-order contributions
can be removed by including them in the free Hamiltonian HA that charac-
terizes the internal dynamics of the subsystem A. To state this more preci-
sely, we first write the Hamiltonian H in the Schrödinger picture in the
form

H=(HA+HA pol) é 1B+1A é HB+(Hint − HA pol é 1B),

where HA pol is determined by the relations

ml
A(HA pol)=C

m

C
ab

glml
ab b l̃ml̃ 0

b Alml
a

for all l. The uniqueness of HA pol is ensured in view of the isomorphism
between Lo(Hl

A) and L(Ha l
A) discussed in Section 2.2. Then, according to

HllŒ

int − Hl
A poldllŒ é 1 l̃

B=C
m

C
ab

glmlŒ

ab AlmlŒ

a é (B l̃ml̃Œ

b − dl̃ l̃Œb
l̃ml̃ 0
b 1 l̃

B)

it is convenient to make the substitutions

HA+HA pol Q HA

B l̃ml̃Œ

b − dl̃ l̃Œb
l̃ml̃ 0
b 1 l̃

B Q B l̃ml̃Œ

b .
(2.7.7)

The redefined hamiltonian operator HA includes the polarization of the
subsystem A in presence of the subsystem B. Adopting the redefined
operators B l̃ml̃Œ

b and using Eqs. (2.7.2) and (2.7.6) we find

Tr(r̄ l̃ 0
B BIl̃ml̃

b (t)) — 0, (2.7.8)

and Eq. (2.6.35) yields

b l̃ml̃
a (t0, tŒ) — 0, (2.7.9)

which is valid to first order in Hint. Thus, the above substitution leads to
a vanishing first-order contribution in Eq. (2.6.49). Expressed in more
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physical terms this means that, neglecting the effects of the fluctuations of
the subsystem B and of the statistical correlation gAB(t), the time evolution
of the subsystem A is trivially described by

dr̄I l
A (t)
dt

=0.

In order to catch the non-trivial part of the dynamics that is induced
in the subsystem A by its interaction with the subsystem B, we have to
consider the effects of the fluctuations dr̄I

B(t) as well as of the statistical
correlation gAB(t) between both subsystems. In the following we will work
with the new operators HA and B l̃ml̃Œ

b , which are obtained after the substi-
tution (2.7.7). Then Eq. (2.7.8) is valid, and all first-order terms vanish.

Let us first consider the functions b l̃mr̃mŒl̃Œ

a aŒ (t0, tŒ, tœ) defined in
Eq. (2.6.44), which depend on the reduced density matrix

r̄I l̃
B (t)=r̄ l̃ 0

B +dr̄I l̃
B (t). (2.7.10)

The changes of b l̃mr̃mŒl̃Œ

a aŒ (t0, tŒ, tœ) due to the fluctuations dr̄I l̃
B (t) lead to con-

tributions of at least third order in the relation (2.6.49), which can be
neglected in our present second-order approach. This means that we can
replace the functions b l̃mr̃mŒl̃

a aŒ (t0, tŒ, tœ) in Eq. (2.6.49) by

c l̃mr̃mŒl̃
a aŒ (tŒ − tœ)=C

bbŒ

glmr
ab grmŒl

aŒbŒ

Tr(r̄ l̃ 0
B BIl̃mr̃

b (tŒ) BIr̃mŒl̃
bŒ (tœ))

Tr(r̄ l̃ 0
B )

. (2.7.11)

They depend only on the time interval tŒ − tœ, since the operators r̄ l̃ 0
B

commute with H̄ l̃
B (see Eq. (2.7.2)) and thus

Tr(r̄ l̃ 0
B BIl̃mr̃

b (tŒ) BIr̃mŒl̃
bŒ (tœ))=Tr(r̄ l̃ 0

B e iH̄ l̃
BtŒ/(B l̃mr̃

b e−iH̄ r̃
B(tŒ − tœ)/(B r̃mŒl̃

bŒ e−iH̄ l̃
Btœ/()

=Tr(r̄ l̃ 0
B e iH̄ l̃

B(tŒ − tœ)/(B l̃mr̃
b e−iH̄ r̃

B(tŒ − tœ)/(B r̃mŒl̃
bŒ ).

From the symmetry properties of the functions b l̃mr̃mŒl̃
a aŒ (t0, tŒ, tœ) we get

immediately

c l̃mr̃mŒl̃
a aŒ (tŒ − tœ)a=c l̃mŒr̃ml̃

aŒ a (tœ − tŒ). (2.7.12)

The functions c l̃mr̃mŒl̃
a aŒ (tŒ − tœ) are the so-called correlation functions of the

‘‘observables’’ associated with the operators BIl̃mr̃
a (tŒ) and BIr̃mŒl̃

aŒ (tœ) in the
subsystem B. They depend explicitly on the statistical equilibrium described
by the density matrix r̄0

B.
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The remaining second-order contributions in Eq. (2.6.49) are gener-
ated by the functions b l̃ml̃

a (t0, t), which are defined in (2.6.35). After the
substitution (2.7.7), the dependence of the functions b l̃ml̃

a (t0, tŒ) on the
interaction Hint is given by second- and higher-order terms. Consequently,
the third term in Eq. (2.6.49), which contains the product of these func-
tions, describes contributions of at least fourth order in the interaction, and
thus it has to be neglected in our present second-order approach. It follows
that only the second term in Eq. (2.6.49) can still contribute to second
order in the interaction. For its evaluation we first rewrite the definition
(2.6.35) of b l̃ml̃

a (t0, tŒ) by using Eqs. (2.7.1) and (2.7.8). We then get

b l̃ml̃
a (t0, tŒ)=C

b

glml
ab

Tr(dr̄I l̃
B (t0) BIl̃ml̃

b (tŒ))

Tr(r̄ l̃ 0
B +dr̄I l̃

B (t0))
. (2.7.13)

Obviously, the second-order contribution to b l̃ml̃
a (t0, tŒ) is determined by the

first-order contribution to dr̄I l̃
B (t0). According to our general assumptions,

the subsystems A and B are statistically uncorrelated at time t00, i.e., we
have

dr̄I l̃
B (t00)=0. (2.7.14)

Thus, from Eq. (2.6.41) and with the definitions (2.6.42) and (2.6.45) we get
the first-order expression

dr̄I l̃
B (t0)=−

i
(

F
t00

t0

dtœ C
mŒbŒaŒ

glmŒl
aŒbŒ [r̄ l̃ 0

B , BIl̃mŒl̃
bŒ (tœ)] almŒ

aŒ (t0, tœ). (2.7.15)

This relation for dr̄I
B(t0) describes the linear response of the subsystem B to

the ‘‘external forces’’ almŒ

aŒ (t0, tœ), which represent the interaction with the
subsystem A over the time interval from t00 to t0. Inserting the above
expression for dr̄I l̃

B (t0) into Eq. (2.7.13) and using the definition (2.7.11),
we obtain finally the desired second-order relation

b l̃ml̃
a (t0, tŒ) 4 C

b

glml
ab

Tr(dr̄I l̃
B (t0) BIl̃ml̃

b (tŒ))

Tr(r̄ l̃ 0
B )

=−
i
(

F
t00

t0

dtœ C
aŒmŒ

C
bbŒ

glml
ab glmŒl

aŒbŒ

Tr([r̄ l̃ 0
B , BIl̃mŒl̃

bŒ (tœ)] BIl̃ml̃
b (tŒ))

Tr(r̄ l̃ 0
B )

almŒ

aŒ (t0, tœ)

=−
i
(

F
t00

t0

dtœ C
aŒmŒ

(c l̃mŒl̃ml̃
aŒ a (tœ − tŒ) − c l̃ml̃mŒl̃

a aŒ (tŒ − tœ)) almŒ

aŒ (t0, tœ).
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With the definition and the symmetry property of the susceptibility

q l̃mmŒ

a aŒ(y)=
2
(

Im(c l̃ml̃mŒl̃
a aŒ (y)),

q l̃mmŒ

a aŒ(y)=−q l̃mŒm
aŒ a(−y),

(2.7.16)

the above equation becomes

b l̃ml̃
a (t0, tŒ)=C

aŒmŒ

F
t0

t00

dtœ q l̃mmŒ

a aŒ(tŒ − tœ) almŒ

aŒ (t0, tœ). (2.7.17)

As was already mentioned above, the functions b l̃ml̃mŒl̃
a aŒ (t0, tŒ, tœ) and

c l̃ml̃mŒl̃
a aŒ (tŒ − tœ) differ from each other by contributions of at least third order

in the interaction. We emphasize that the correlation functions depend only
on the time difference tŒ − tœ and, in particular, do not depend on t00.
Keeping only terms up to second order, we thus find that the second and
the fourth term in Eq. (2.6.49) cancel each other, so that finally, under the
additional initial conditions discussed at the beginning of this subsection,
only the first and the fifth terms of Eq. (2.6.49) contribute to the corre-
sponding second-order expression. The influence of the subsystem B on the
evolution of the subsystem A is then given by

r̄I l
A (t)=r̄I l

A (t0)+1 i
(

22

F
t

t0

dtŒ C
ma

F
tŒ

t00

dtœ

× C
mŒaŒ

C
r

(r̄I l
A (t0) AIlmŒr

aŒ (tœ) AIrml
a (tŒ) c l̃mŒr̃ml̃

aŒ a (tœ − tŒ)

− AIlmŒr
aŒ (tœ) r̄I r

A (t0) AIrml
a (tŒ) c r̃ml̃mŒr̃

a aŒ (tŒ − tœ)

− AIlmr
a (tŒ) r̄I r

A (t0) AIrmŒl
aŒ (tœ) c r̃mŒl̃mr̃

aŒ a (tœ − tŒ)

+AIlmr
a (tŒ) AIrmŒl

aŒ (tœ) r̄I l
A (t0) c l̃mr̃mŒl̃

a aŒ (tŒ − tœ)). (2.7.18)

The above equation describes the situation, where the subsystem B is held
near some statistical equilibrium but still fluctuates. We see that, apart
from an explicit dependence on the time t00, the resulting evolution of the
subsystem A is fully determined by the correlation functions c l̃mr̃mŒl̃

a aŒ (tŒ − tœ).
As a particular example, let us consider the case where the density

matrix of the bath subsystem B is described by the canonical ensemble

r̄ l̃ 0
B =

1
ZB

e−bH̄ l̃
B, b=

1
kBT

.
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Inserting the formal identity

Tr(r̄ l̃ 0
B BIl̃mr̃

b (tŒ) BIr̃mŒl̃
bŒ (tœ))

=
1

ZB
Tr(e iH̄ l̃

B(tŒ+i(b − tœ)/(B l̃mr̃
b e−iH̄ r̃

B(tŒ+i(b − tœ)/(e−bH̄ r̃
BB r̃mŒl̃

bŒ )

=Tr(r̄ r̃ 0
B e−iH̄ r̃

B(tŒ+i(b − tœ)/(B r̃mŒl̃
bŒ e iH̄ l̃

B(tŒ+i(b − tœ)/(B l̃mr̃
b )

=Tr(r̄ r̃ 0
B BIr̃mŒl̃

bŒ (tœ) BIl̃mr̃
b (tŒ+i(b))

into the definition (2.7.11) for the correlation functions, we get the symmetry
property

p0
lc l̃mr̃mŒl̃

a aŒ (y)=C
bbŒ

glmr
ab grmŒl

aŒbŒ Tr(r̄ r̃ 0
B BIr̃mŒl̃

bŒ (tœ) BIl̃mr̃
b (tŒ+i(b))

=p0
rc r̃mŒl̃mr̃

aŒ a (−y − i(b) (2.7.19)

with p0
l=Tr(r̄ l̃ 0

B ), which will be used later on.

2.8. Statistical Evolution of the Subsystem A for a Subsystem B

Acting as a Bath

We now come back to our original problem, which was the description
of the statistical evolution of the subsystem A coupled to a bath subsystem B.
As before, we assume weak dynamical coupling and weak statistical corre-
lations between both subsystems. The bath character of the subsystem B
imposes certain constraints. First, we have to assume that the subsystem B
fluctuates around a statistical equilibrium, which is described by a density
matrix r̄0

B that commutes with the free hamiltonian operator H̄B, the fluc-
tuations becoming uncorrelated for times larger than the ‘‘correlation
time’’ ycorr

B . Secondly, the evolution of the subsystem A must be slow on the
time scale ycorr

B , i.e., the correlation time ycorr
B has to be much smaller than

the typical ‘‘evolution time’’ yevol
A of the subsystem A.

The second condition requires some additional comments. While the
meaning of the correlation time ycorr

B is rather self-explanatory—it defines
the time interval |tŒ − tœ| over which the correlation functions c l̃mr̃mŒl̃

aaŒ (tŒ − tœ)
differ significantly from zero—the notion of the evolution time yevol

A is much
more subtle. This time will be defined properly in the next subsection. For
the moment it is sufficient to say that the ‘‘evolution time’’ yevol

A can be seen
as a measure of the coupling strength, which increases with decreasing
strength of Hint. Roughly speaking, for electrons in a ‘‘frozen’’ molecule,
yevol

A would correspond to the fine-structure splitting of the energy levels.
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It is easily seen that—in principle—a small correlation time ycorr
B is only

compatible with a broad continuous (or at least quasi-continuous) energy
spectrum of the subsystem B and a statistical state r̄0

B corresponding to
wide-spread occupation probabilities on this energy spectrum. At first
sight, this seems to be in conflict with our actual description, where the
subsystem B is associated with a Hilbert space HB of finite dimension. In a
completely closed system this would lead to Poincaré cycles for the corre-
lation functions of the subsystem B on long time scales. (38) This is obviously
not the situation considered here, where we have characterized the bath
subsystem B by the mean density matrix r̄0

B and the correlation functions
c l̃mr̃mŒl̃

a aŒ (tŒ − tœ), which become zero for large time intervals tŒ − tœ. In order to
solve this puzzle, let us first recall that, according to the remarks at the
beginning of Section 2.7, the relation (2.7.18) is still valid for subsystems B
interacting with the external world containing an infinite number of degrees
of freedom and a continuous infinite spectrum. In this case, the statistical
properties of the subsystem B and in particular the correlation functions
c l̃mr̃mŒl̃

a aŒ (tŒ − tœ) are determined by its interaction with the subsystem A as well
as by its interaction with the external world. In our present description we
assume that the latter interaction prohibits the appearance of Poincaré
cycles, and that it is responsible for the required small correlation time ycorr

B .
Thus, ycorr

B is a phenomenological parameter that accounts for the effective
openness of the considered A+B system due to its interaction with the
infinite external world.

Our present aim is to describe the evolution of the subsystem A during
a time interval Dt — t − t0 that is much larger than the correlation time ycorr

B ,
i.e., we suppose

t − t0 — Dt ± ycorr
B .

The above restriction allows us to simplify the corresponding relation
(2.7.18). As can be seen from this equation, the influence of the bath sub-
system B on the evolution of the subsystem A is completely determined by
the correlation functions c l̃mr̃mŒl̃

aaŒ (tŒ − tœ). The latter are only significantly
different from zero if their argument |tŒ − tœ| is of the same order of magni-
tude or smaller than the correlation time ycorr

B . Accordingly, the integration
area for the double integrals with respect to tŒ and tœ in Eq. (2.7.18) can be
restricted to a narrow strip close to the line |tŒ − tœ|=0. This suggests to
replace tœ in Eq. (2.7.18) by the new variable of integration y=tŒ − tœ. Then
the double integration can be rewritten as

F
t

t0

dtŒ F
tŒ

t00

dtœ · · · =−F
t

t0

dtŒ F
0

tŒ − t00

dy · · · =F
t

t0

dtŒ F
tŒ − t00

0
dy · · · 4 F

t

t0

dtŒ F
.

0
dy · · · .
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For the last approximate equality we have used the fact that the correlation
functions c l̃mr̃mŒl̃

aaŒ (y) vanish for y \ tŒ − t00 \ t0 − t00 \ ycorr
B . Thus, expression

(2.7.18) can be replaced by

r̄I l
A (t)=r̄I l

A (t0)+1 i
(

22

F
t

t0

dtŒ C
ma

F
.

0
dy

× C
mŒaŒ

C
r

(r̄I l
A (t0) AIlmŒr

aŒ (tŒ − y) AIrml
a (tŒ) c l̃mŒr̃ml̃

aŒa (−y)

− AIlmŒr
aŒ (tŒ − y) r̄I r

A (t0) AIrml
a (tŒ) c r̃ml̃mŒr̃

aaŒ (y)

− AIlmr
a (tŒ) r̄I r

A (t0) AIrmŒl
aŒ (tŒ − y) c r̃mŒl̃mr̃

aŒa (−y)

+AIlmr
a (tŒ) AIrmŒl

aŒ (tŒ − y) r̄I l
A (t0) c l̃mr̃mŒl̃

aaŒ (y)). (2.8.1)

We emphasize that the above relation does no longer depend on the time t00.
It is homogeneous with respect to the time. This is a consequence of the
fact that the bath subsystem B has a finite temporal memory, which implies
that it cannot store any information about its interaction with the subsys-
tem A over times larger than ycorr

B . Thus, the introduction of the time t00 is
just a formal step, which does not lead to any further limitations concern-
ing the validity of the present approach. The influence of the bath B on the
behavior of the subsystem A is completely determined by the statistical
correlations which are ‘‘born’’ during the time interval from t0 to t. These
correlations are maintained over times, which are of the order of ycorr

B , and
thus much shorter than the considered time interval.

To write Eq. (2.8.1) in a more explicit form, we refer to the ortho-
normal basis vectors in the Hilbert space HaA, which were introduced in
Section 2.2. Let us briefly recall the basic facts. The orthonormal basis of
the Hilbert space HaA is given by the vectors |a, lP — |a, l, 1P, a=1,..., nl

A

and l ¥ LAB. According to Eq. (2.5.5), these vectors are eigenvectors of the
Hamiltonian H̄A, i.e., they satisfy

H̄A |a, lP=El
a |a, lP. (2.8.2)

We have

OaŒ, lŒ| AIlmr
a (t) |aœ, rŒP=0 if lŒ ] l or rŒ ] r, (2.8.3)

and otherwise

OaŒ, l| AIlmr
a (t) |aœ, rP=OaŒ, l| Almr

a |aœ, rP e i w
l r
aŒ aœ t (2.8.4)
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with

wl r
aŒ aœ=

El
aŒ − Er

aœ

(
. (2.8.5)

Thus, using the above basis of HaA, we know the explicit time dependence
of the matrix elements of the operators occurring in Eq. (2.8.1). This allows
us to write the corresponding relations for the matrix elements of the
density matrix r̄I l

A (t) in a rather compact form. Inserting the matrix ele-
ments (2.8.3)–(2.8.5) into the matrix equation corresponding to Eq. (2.8.1),
we obtain

Oa1, l| r̄I l
A (t) |a2, lP

=Oa1, l| r̄I l
A (t0) |a2, lP

+C
r

C
aŒ1, aŒ2

Cr aŒ1aŒ2
l a1a2

Oa −

1, r| r̄I r
A (t0) |a −

2, rP F
t

t0

exp(i(wl l
a1a2

− wr r
aŒ1aŒ2

) tŒ) dtŒ
(2.8.6)

with

Cr aŒ1aŒ2
l a1a2

=1Fr aŒ1aŒ2
l a1a2

+Fr aŒ2aŒ1
l a2a1

a − dlr
1daŒ1

a1
C
a, n

Fla2aŒ2
naa +daŒ2

a2
C
a, n

Fla1aŒ1
naa

a22

(2.8.7)

and

Fr aŒ1aŒ2
l a1a2

=
1
(

2 C
ma

C
mŒaŒ

Oa1, l| Almr
a |a −

1, rPOa −

2, r| ArmŒl
aŒ |a2, lP F

0

−.

c r̃mŒl̃mr̃
aŒa (y) e i w

r l
aŒ2a2

y dy.

(2.8.8)

From the above expression of the coefficients Cr aŒ1aŒ2
l a1a2

we get immediately
the symmetry relations

Cr aŒ1aŒ2
l a1a2

a=Cr aŒ2aŒ1
l a2a1

(2.8.9)

and the sum rule

C
l

C
a

Cr aŒ1aŒ2
l aa =0. (2.8.10)

The proof of the relations (2.8.6) and (2.8.7) is straightforward even though
rather laborious, and it does not present any major mathematical diffi-
culties. After integration with respect to tŒ in Eq. (2.8.6), we obtain the
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following expression for the matrix elements of the reduced density matrix
r̄I

A(t)

Oa1, l| r̄I l
A (t) |a2, lP

=Oa1, l| r̄I l
A (t0) |a2, lP+Dt C

r

C
aŒ1aŒ2

Cr aŒ1aŒ2
l a1a2

Oa −

1, r| r̄I r
A (t0) |a −

2, rP

× g((wl l
a1a2

− wr r
aŒ1aŒ2

) Dt) exp(i(wl l
a1a2

− wr r
aŒ1aŒ2

) t̄) (2.8.11)

with

Dt=t − t0 and t̄=t0+
Dt
2

, (2.8.12)

and where g denotes the real function

g(x)=
sin(x/2)

x/2
, x ¥ R. (2.8.13)

Equation (2.8.11) gives us the desired time dependence of the statistical
state of the subsystem A interacting with the bath subsystem B. It is the
basis for our following derivation of the so-called master equations, which
govern the ‘‘coarse grained’’ evolution of the subsystem A.

The absolute values of the exact matrix elements Oa1, l| r̄I l
A (t) |a2, lP

are bounded by 1. This follows from Eq. (2.2.28), which implies that

C
l

C
n l

A

a1, a2=1
|Oa1, l| r̄A |a2, lP|2 — Tr((r̄A)2) [ Tr(r̄A)=1.

In order to prevent violation of this condition when using the approxima-
tive relations (2.8.11), we have to keep the time interval Dt small enough.
This means that the relations (2.8.11) are only valid within a time interval,
which on the one hand satisfies Dt ± ycorr

B , and which on the other hand is
small enough to ensure that the operator r̄I

A(t) provided by (2.8.11) satis-
fies the second condition (2.2.28). It should be noted that the two further
conditions listed in (2.2.28) are automatically satisfied by the approximated
reduced density matrix, since the relations (2.8.11) together with the prop-
erties (2.8.9) and (2.8.10) yield a self-adjoint density matrix r̄I

A(t) with unit
trace for arbitrary t and t0.

2.9. Coarse Grained Statistical Evolution of the Subsystem A

In the following we will assume that the ensemble of difference
frequencies wl l

a1a2
− wr r

aŒ1aŒ2
] 0 in Eq. (2.8.11) does not have an accumulation
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point at zero frequency, or in other words, that the spectrum of all tran-
sition frequencies wl l

a1a2
possesses a minimal non-zero splitting frequency

DwA,

DwA=inf |wl l
a1a2

− wr r
aŒ1aŒ2

| ] 0,

with a1 and a2=1,..., nl
A, a −

1 and a −

2=1,..., nr
A and l, r ¥ LA. This condi-

tion is satisfied in the presently considered situation of a Hilbert space HA

of finite dimension where one has a finite number of frequencies.
Our present purpose is to obtain a system of equations governing the

so-called ‘‘coarse grained’’ evolution. In other words, we are looking for
the equations, which govern the time evolution of a ‘‘time-averaged’’
density matrix r̄I

A(t), where the time averaging suppresses the oscillations
generated by the bath. We define the time-averaged density matrix DI

R(t̄)
by

DI
R(t̄)=

1
Dt

F
t̄+Dt/2

t̄ − Dt/2
r̄I

A(tŒ) dtŒ (2.9.1)

with

ycorr
B ° Dt ° p/wmax < 2p/DwA, (2.9.2)

where

wmax=max{|wl l
a1a2

|}, a1, a2=1,..., nl
A, l ¥ LAB

denotes the maximal transition frequency. Similar to r̄I
A(tŒ), the operator

DI
R(t̄) (2.9.1) is self-adjoint with unit trace. We note, however, that the time-

averaged density matrix DI
R(t̄) does not strictly satisfy the positivity condi-

tion (2.2.28).
Equation (2.9.2) allows us to use the approximate identity

g((wl l
a1a2

− wr r
aŒ1aŒ2

) Dt)=1. (2.9.3)

Then, according to the relations (2.8.11), the evolution of the restricted
density matrix r̄I l

A (t) is basically governed by two different types of
behavior. On the one hand, terms with wl l

a1a2
− wr r

aŒ1aŒ2
4 0 lead to a change

increasing linearly with time. On the other hand, terms corresponding to
difference frequencies significantly different from zero give rise to oscillat-
ing contributions. Obviously, a clear cut separation between the two types
of behavior is only possible if both contributions act on different time
scales. The time scale for the the slowest oscillations is given by 2p/DwA.
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The typical time scale for the linear change of the reduced density matrix
r̄I

A(t) is given by the inverse of the ‘‘evolution time’’ yevol
A , which was intro-

duced in Section 2.8. Starting from Eq. (2.8.11), we define yevol
A as the time

interval, which would correspond to a change of order unity of the matrix
element Oa1, l| r̄I l

A (t) |a2, lP with the fastest linear increase, i.e.,

1
yevol

A

= sup
(l, a1, a2) ¥ D

: C
r

C
aŒ1aŒ2

Cr aŒ1aŒ2
l a1a2

Oa −

1, r| r̄I r
A (t0) |a −

2, rP:

with

D={(l, a1, a2) | l ¥ LAB, a1, a2=1,..., nl
A}.

The term | · · · | specifies the speed of the linear change for the matrix
element Oa1, l| r̄I l

A (t0) |a2, lP. Consequently, linear and oscillatory contri-
butions are well distinguished if

2p/DwA ° yevol
A . (2.9.4)

This condition is an alternative way to express our initial assumption of
a weak dynamical coupling. Putting the conditions (2.9.2) and (2.9.4)
together we have

ycorr
B ° Dt ° p/wmax < 2p/wA ° yevol

A .

From the definition (2.9.1) it follows that

dDI
R(t̄)

dt̄
=

r̄I
A(t) − r̄I

A(t0)
t − t0

.

Thus, making use of Eq. (2.9.3), we get from Eq. (2.8.11)

d
dt̄

Oa1, l| DI
R(t̄) |a2, lP=C

r

C
aŒ1, aŒ2

Cr aŒ1aŒ2
l a1a2

Oa −

1, r| r̄I r
A (t0) |a −

2, rP e i(w
l l
a1a2

− w
r r
aŒ1aŒ2

) t̄.
(2.9.5)

For the considered time intervals satisfying the condition (2.9.2), the matrix
elements of r̄I

A(t0) on the right-hand side of the relations (2.9.5) can be
replaced by the respective matrix elements of the operator DI

R(t̄). We then
get the Redfield equations (9–11)

d
dt̄

Oa1, l| DI
R(t̄) |a2, lP= C

r, aŒ1, aŒ2

Cr aŒ1aŒ2
l a1a2

Oa −

1, r| DI
R(t̄) |a −

2, rP e i(w
l l
a1a2

− w
r r
aŒ1aŒ2

) t̄.
(2.9.6)
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When considering the effects of external forces, it is convenient to
change to a Schrödinger-like picture, in order to get rid of the spurious
time-dependence introduced by the change to the interaction picture. We
then have to consider the evolution of the matrix

DR(t̄)=e−iH̄At̄/(DI
R(t̄) e+iH̄At̄/(. (2.9.7)

From Eq. (2.9.6) we find

d
dt̄

Oa1, l| DR(t̄) |a2, lP

=
i
(
Oa1, l| [DR(t̄), H̄A] |a2, lP+ C

r, aŒ1, aŒ2

Cr aŒ1aŒ2
l a1a2

Oa −

1, r| DR(t̄) |a −

2, rP.
(2.9.8)

The above ‘‘master equations’’ Eq. (2.9.6) or Eq. (2.9.8) govern the
coarse grained evolution of the time-averaged reduced density matrix of the
subsystem A interacting with the bath B, where the subsystems A and B
represent parts of a fermionic system. It should be noted that, as a direct
consequence of Eq. (2.2.14), the matrices DI

R(t̄) and DR(t̄) are block-
diagonal with respect to the type l. Dynamical coupling between different
diagonal blocks l and r is generated by the bath subsystem B through
the coefficients Cr aŒ1aŒ2

l a1a2
. Consequently, Eqs. (2.9.6) and (2.9.8) constitute

systems of coupled master equations.
In many situations the oscillatory contributions to the Redfield equa-

tions (2.9.6) are irrelevant. Then the evolution of the time-averaged density
matrix becomes Markovian, i.e., we get

d
dt̄

Oa1, l| DI(t̄) |a2, lP= C
{r, aŒ1, aŒ2 | w

r r
aŒ1aŒ2

=w
l l
a1a2

}

Cr aŒ1aŒ2
l a1a2

Oa −

1, r| DI(t̄) |a −

2, rP.
(2.9.9)

In order to simplify our terminology, we will from now on refer to these
equations as the master equations governing the Markovian coarse-grained
evolution or the Markovian master equations. Switching to the Schrödinger
picture, we get in full analogy with Eqs. (2.9.7) and (2.9.8)

D(t̄)=e−iH̄At̄/(DI(t̄) e+iH̄At̄/(
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and

d
dt̄

Oa1, l| D(t̄) |a2, lP=
i
(
Oa1, l| [D(t̄), H̄A] |a2, lP

+ C
{r, aŒ1, aŒ2 | w

r r
aŒ1aŒ2

=w
l l
a1a2

}

Cr aŒ1aŒ2
l a1a2

Oa −

1, r| D(t̄) |a −

2, rP.
(2.9.10)

In Section 3 we will discuss the Markovian master equations (2.9.9)
and (2.9.10) for the particular situation, where the physical system is
provided by N electrons. We will see that in this situation the spin part of
the electrons takes the part of the subsystem A, whereas the spatial degrees
of freedom, i.e., positions and momenta, take the part of the subsystem B.
Furthermore, there is a one-to-one correspondence between the type l and
the quantum number specifying the total spin of the electrons.

The master equations (2.9.6) and (2.9.9) show that the evolution of the
subsystem A associated with the internal degrees of freedom is determined
by the coefficients Cr aŒ1aŒ2

l a1a2
. In the following we will focus on the structure of

these coefficients and on their physical interpretation.

2.10. Structure of the Master Equations

In this subsection we will rearrange the master equations (2.9.9) to
obtain a better understanding of the physical mechanisms, which govern
the Markovian coarse grained evolution of a subsystem A of a fermionic
system. This evolution is of course completely determined by the coeffi-
cients Cr aŒ1aŒ2

l a1a2
. In fact, due to the restriction of the summation in Eq. (2.9.9)

we need only to consider the coefficients corresponding to wr r
aŒ1aŒ2

=wl l
a1a2

.
Thus, without loss of generality we can assume

Cr aŒ1aŒ2
l a1a2

=0 if wl l
a1a2

] wr r
aŒ1aŒ2

. (2.10.1)

Starting from the definition (2.8.7), we first rewrite the coefficients as

Cr aŒ1aŒ2
l a1a2

=C r aŒ1aŒ2
0 l a1a2

+
i
(

dlr(da1aŒ1
(Hl

aŒ2a2
+iGl

aŒ2a2
) − (Hl

a1aŒ1
− iGl

a1aŒ1
) da2aŒ2

)
(2.10.2)
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with

C r aŒ1aŒ2
0 l a1a2

=FraŒ1aŒ2
la1a2

+FraŒ2aŒ1
la2a1

a

Gl
aaŒ=

(

2
C
naœ

(FlaŒa
naœaœ+FlaaŒ

naœaœ

a)

Hl
aaŒ=i

(

2
C
naœ

(FlaŒa
naœaœ − FlaaŒ

naœaœ

a).

(2.10.3)

The new coefficients satisfy the symmetry relations

C r aŒ1aŒ2
0 l a1a2

a=C r aŒ2aŒ1
0 l a2a1

Gl
aaŒ

a=Gl
aŒa Hl

aaŒ

a=Hl
aŒa. (2.10.4)

From the definition (2.8.8), the symmetry property (2.7.12), the relation
(2.6.24), and exploiting the fact that presently we have wr l

aŒ1a1
=wr l

aŒ2a2
, we get

C r aŒ1aŒ2
0 l a1a2

=
1
(

C
ma

C
mŒaŒ

q r̃ml̃mŒr̃
aaŒ (wr l

aŒ1a1
)Oa1, l| AlmŒr

aŒ |a −

1, rPOa −

2, r| Arml
a |a2, lP

(2.10.5)

where

q r̃ml̃mŒr̃
aaŒ (w)=

1
(

F
+.

−.

c r̃ml̃mŒr̃
a aŒ (y) e iwy dy. (2.10.6)

Due to the symmetry property (2.7.12) we have also

q r̃ml̃mŒr̃
aaŒ (w)a=q r̃mŒl̃mr̃

aŒa (w). (2.10.7)

This can be used to rewrite the expression for Gl
aaŒ defined in (2.10.3). For

simplicity, we will assume in the following that wl l
a1a2

=wr r
aŒ1aŒ2

is only pos-
sible for a1=a2 and a −

1=a −

2. For El
a=El

aŒ, which then corresponds to our
condition (2.10.1), we get

Gl
aaŒ=

(

2
C
naœ

C l aŒa
0 n aœaœ

=
1
2

C
naœ

C
ma

C
mŒaŒ

q l̃mñmŒl̃
aaŒ (wln

aaœ)Oa, l| Almn
a |aœ, nPOaœ, n| AnmŒl

aŒ |aŒ, lP.
(2.10.8)
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Again, the definition for Hl
aaŒ in (2.10.3) becomes for El

a=El
aŒ

Hl
aaŒ=− 1

2 C
naœ

C
ma

C
mŒaŒ

q̄ l̃mñmŒl̃
aaŒ (wln

aaœ)Oa, l| Almn
a |aœ, nPOaœ, n| AnmŒl

aŒ |aŒ, lP

(2.10.9)

with

q̄ l̃mñmŒl̃
aaŒ (w)=

i
(

F
.

−.

c l̃mñmŒl̃
aaŒ (y) E(y) e iwy dy. (2.10.10)

For El
a ] El

aŒ we have Gl
aaŒ=Hl

aaŒ=0.
The function E(y) in Eq. (2.10.10) represents the Heaviside function

E(y)=˛1 if y > 0

0 if y=0

−1 if y < 0.

(2.10.11)

Note that, similar to Eq. (2.10.7), the symmetry relation (2.7.12) implies
also that

q̄ l̃mr̃mŒl̃
aaŒ (w)a=q̄ l̃mŒr̃ml̃

aŒa (w). (2.10.12)

The coefficients Hl
aaŒ define a self-adjoint operator acting in the Hilbert

space HaA, which will be denoted DH̄A in the following. Its matrix elements
in the full space HaA read

Oa, l| DH̄A |aŒ, rP=dlrHl
aaŒ. (2.10.13)

Since Hl
aaŒ is non-zero only if El

a=El
aŒ, the operator DH̄A commutes with

the hamiltonian operator H̄A, i.e., we have

[H̄A, DH̄A]=0. (2.10.14)

Similarly, based on the coefficients Gl
aaŒ defined in Eq. (2.10.6), we can

define self-adjoint operators ḠA by their matrix elements

Oa, l| ḠA |aŒ, rP=dlrGl
aaŒ. (2.10.15)

The operator ḠA commutes again with the free hamiltonian operator H̄A

[H̄A, ḠA]=0. (2.10.16)
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In addition, the self-adjoint operator ḠA is positive, i.e.,

ḠA \ 0. (2.10.17)

This is obviously true when all eigenvalues of the matrices Gl
aaŒ are positive

or zero. According to Eq. (2.10.16), the eigenvectors |a, lP of H̄A, which
span the subspace HaA, can be supposed to be simultaneously eigenvectors
of the operator ḠA. Thus, we have only to prove that the coefficients Gl

aa

are positive or zero. Actually, this property is a direct consequence of the
more fundamental fact that the coefficients C raŒaŒ

0laa are real and positive. The
reality of these coefficients is a direct consequence of the symmetry prop-
erties (2.10.4). To prove the positivity, let us first note that the symmetry
properties (2.10.7) imply that the expression

C
mamŒaŒ

xm
a q r̃ml̃mŒr̃

a aŒ (w)(xmŒ

aŒ )
a (2.10.18)

is real for w ¥ R, -xm
a ¥ C, and for arbitrary r̃, l̃. Moreover, this expression

is positive. In order to prove this, we start from the definition (2.7.11).
According to the commutation relation (2.7.2), the eigenvectors |b, l̃P of
the Hamiltonian H̄B defining the subspace HaB are also eigenvectors of the
density matrix r̄0

B, so that

H̄B |b, l̃P=E l̃
b |b, l̃P and r̄0

B |b, l̃P=p l̃
b |b, l̃P

with

p l̃
b \ 0 and C

l̃ ¥ LB

C
n l̃

B

b=1
p l̃

b=1.

Consequently, taking account of the symmetry properties (2.6.25) as well as
of Eq. (2.7.11), we get for the expression (2.10.18)

1

Tr(r̄ r̃ 0
B )

F
.

−.

Tr(r̄ r̃ 0
B e iH̄ r̃

By/(B r̃l̃e−iH̄ l̃
By/((B r̃l̃)†) e iwy dy

=
2p

p0
r

C
b, bŒ

p r̃
bOb, r̃| B r̃l̃ |bŒ, l̃PObŒ, l̃| (B r̃l̃)† |b, r̃P d(w+w r̃l̃

bbŒ) \ 0,

with the operators

B r̃l̃=C
ma

xm
a C

b

grml
ab B r̃ml̃

b ,

(B r̃l̃)†=C
ma

xm
a

a C
b

glmr
ab B l̃mr̃

b ,
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which satisfy the relation

ObŒ, l̃| (B r̃l̃)† |b, r̃P=Ob, r̃| B r̃l̃ |bŒ, l̃Pa.

Now, putting

xm
a =OaŒ, r| Arml

a |a, lP,

which implies also

xm
a

a=Oa, l| Almr
a |aŒ, rP,

we see that the positive expression (2.10.18) agrees with the expression
(2.10.5) for C raŒaŒ

0laa , apart from a factor 1/(. Consequently, we have

C raŒaŒ

0laa > 0, -(l, a) and -(r, aŒ), (2.10.19)

which implies (2.10.17).
Written in terms of the new coefficients defined in Eq. (2.10.2), the

Markovian master equations (2.9.9) become

dDI(t̄)
dt̄

=C0(DI(t̄))+
i
(

(DI(t̄)(DH̄A+iḠA) − (DH̄A − iḠA) DI(t̄)),
(2.10.20)

where C0 denotes the linear mapping

C0: L(HaA) -L(HaA), (2.10.21)

which transforms a linear operator O of HaA into a new linear operator OŒ

of HaA such that

Oa1, l| OŒ |a2, mP=dlm C
raŒ1aŒ2

C r aŒ1aŒ2
0 l a1a2

Oa −

1, r| O |a −

2, rP. (2.10.22)

It should be recognized that the term C0(DI(t̄)) plays a rather particular
role in the master equations (2.10.20). This results from the fact that the
time-averaged density matrix DI(t̄) is block diagonal, whereas C0(DI(t̄))
is a full matrix! This important feature is a consequence of the indistin-
guishability of the particles constituting the A+B system and the related
symmetry properties. Consequently, coupling between different diagonal
blocks is possible only through the term C0(DI(t̄))! This resembles the
situation of a superselection rule in quantum mechanics, the only difference
being that the quantum states are presently replaced by statistical states.
As will be shown in Section 3, in the case of electrons the types l define
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the total electronic spin. Thus, in a statistical ensemble of electrons, the
total spin S plays a role similar to that of a classical variable. In order
to characterize this particular behavior we may say that in a statistical
ensemble the total electron spin S satisfies a ‘‘statistical superselection
rule.’’

The new form of the master equations (2.10.20) allows us to identify
the different concurring contributions to the evolution of the reduced
density matrix of the subsystem A, which are induced by the interaction
with the bath subsystem B. Formally, the second term describes the effect
of the interaction with an ‘‘effective Hamiltonian’’ DH̄A+iḠA, which is
described by a non-self-adjoint linear operator. The two constituting
operators DH̄A and ḠA being self-adjoint, it is easily seen that both play
completely different roles for the evolution of the subsystem A. Whereas
the ‘‘self-energy operator’’ DH̄A just changes the eigenenergies of the sub-
system A, the operator ḠA gives rise to dissipation. Let us recall that the
‘‘effective Hamiltonian’’ DH̄A+iḠA does not couple between different sub-
spaces Ha l

A. This type of coupling is only provided by the first term in
Eq. (2.10.20), which describes again dissipative (or irreversible) contribu-
tions to the evolution. The operator C0 is thus responsible for the transfer
of populations between states corresponding to different quantum numbers l.

Let us now discuss the particular situation of a thermal equilibrium at
a temperature corresponding to b=1/kBT. From Eq. (2.7.19) we get

p0
rq r̃ml̃mŒr̃

aaŒ (w)=
p0

l

(
F

.

−.

c l̃mŒr̃ml̃
aŒa (−y − i(b) e iwy dy

=
p0

l

(
F

.+i(b

−.+i(b

c l̃mŒr̃ml̃
aŒa (y) e−iw(y+i(b) dy

=p0
leb(wq l̃mŒr̃ml̃

aŒa (−w).

We then find

p0
rC r aŒ1aŒ2

0 l a1a2
=

p0
l

(
eb(w

r l
aŒ1a1 C

ma

C
mŒaŒ

q l̃mŒr̃ml̃
aŒa (−wr l

aŒ1a1
)

×Oa1, l| AlmŒr
aŒ |a −

1, rPOa −

2, r| Arml
a |a2, lP

=p0
leb(w

r l
aŒ1a1C

l a2a1
0 r aŒ2aŒ1

.

The last equality is obtained using the relation − wr l
aŒ1a1

=wl r
a2aŒ2

. Finally we
get

p0
re−bEr

aŒ1C r aŒ1aŒ2
0 l a1a2

=p0
le−bEl

a1C l a2a1
0 r aŒ2aŒ1

. (2.10.23)
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Note that the corresponding energies satisfy the relation Er
aŒ1

− Er
aŒ2

=
El

a1
− El

a2
.

For the discussion of the effects of external forces, it is often more
convenient to change to a Schrödinger-like picture. Using the fact that H̄A

commutes with the operators DH̄A and ḠA, we get from Eq. (2.9.10)

dD(t̄)
dt̄

=C0(D(t̄))+
i
(

[D(t̄), H̄A+DH̄A] −
1
(

{D(t̄), ḠA}, (2.10.24)

where {...,...} denotes the anti-commutator. This equation, together with
the definitions (2.10.5), (2.10.8), and (2.10.9) of the relevant operators C0,
ḠA and DH̄A, constitutes the basis for our following discussions. In partic-
ular, it will allow us to investigate the influence of external ‘‘forces’’ on the
subsystem A, provided that the following two conditions are satisfied.
First, one has to ensure that the external ‘‘forces’’ do not act directly on the
bath. Secondly, the time dependence of the external ‘‘forces’’ must be suf-
ficiently slow. More precisely, the change of the external ‘‘forces’’ during a
time interval Dt must be negligible on the time scale yevol

A . Under the above
two conditions one may describe the external ‘‘forces’’ by adding an addi-
tional hamiltonian-like term H̄A ext(t̄) that is derived from the correspond-
ing HA ext(t) acting in the Hilbert space HA. The term H̄A ext(t̄) acting in HaA

can then be obtained by exploiting the homomorphism mA (see Eq. (2.2.19))
as described in Section 2.2. We just recall the commutation relations

[HA ext(t), UA(s)]=0, s ¥ SN, (2.10.25)

which result from the fermionic character of the system. Moreover,
according to the above remarks, we have

H̄A ext(t̄)=mA(HA ext(t̄)). (2.10.26)

The resulting equation governing the evolution in the presence of external
forces reads

dD(t̄)
dt̄

=C0(D(t̄))+
i
(

[D(t̄), H̄A+DH̄A+H̄A ext(t̄)] −
1
(

{D(t̄), ḠA}.
(2.10.27)

This equation would for example be adequate to describe the effect of an
external magnetic field on the spin dynamics in a molecule with N electrons,
provided that the magnetic field is sufficiently weak, so that its influence on
the spatial degrees of freedom can be neglected.
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3. APPLICATION TO N-ELECTRON SYSTEMS

3.1. Description of the Electronic Spin Subsystem

We now come back to our original problem, which is the description
of the coherent and dissipative spin dynamics in finite N electron systems.
Following the general ideas of Section 2.1, we assume that the spin prop-
erties correspond to the subsystem A whereas the bath subsystem B is
associated with the spatial properties. In this case the Hilbert space HA

is given by the tensor product (C2) é N supplied with the scalar product
induced by the usual scalar product in C2, and the non-trivial isotypic
components of HA are associated with types l=[l1, l2]. It is a well-
known result of the theory of linear representations of the group SN that
then the isotypic component l coincides with the eigensubspace of spins
S=l1 − l2

2 , so that

l=[l1, l2], l1=
N
2

+S, l2=
N
2

− S. (3.1.1)

The corresponding dimensions of the above irreducible representations of l

type of the group SN are

dl=(l1+1 − l2)
N!

(l1+1)! l2!
. (3.1.2)

The proof of the above relations is given in ref. 42. The multiplicity of the
irreducible representation of type l is 2S+1. (43) The type S is associated
with l by Eq. (3.1.1). Thus the vectors |a, l, iP will be denoted |M, S, iP in
the following, where M=−S, −S+1,..., S and i=1,..., dl. Moreover, nl

A

is replaced by nS
A=2S+1 with S=N/2, (N − 2)/2,..., 0 or 1/2, depending

on whether N is even or odd. Here it is important to realize that the vectors
|M, S, iP are not yet known and that they have still to be determined. In
particular, at the present stage the index M just labels the 2S+1 irreducible
subspaces associated with the type l (or S), and it has yet no physical
interpretation.

Accordingly, the vectors |a, b, lP of the general theory become
|M, b, SP. The subspace generated by |M, b, SP for fixed S, corresponding
to Hl

A+B in Section 2, is denoted HS
A+B. The choice of a basis satisfying

the conditions (2.1.19) and (2.1.27) requires the knowledge of HA, Hint, and
of the density matrix r̄0

B describing the statistical equilibrium of the bath
subsystem B. This basis will be determined in Section 3.4. For the moment
it is fully sufficient to suppose the existence of such a basis.
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We describe the interaction between spatial degrees of freedom and
spin degrees of freedom in terms of the spin-orbit like coupling term

Hint= C
N

j=1
s j éB j(p1,..., pN; q1,..., qN), (3.1.3)

where p j and q j refer to the electronic momentum and position operators,
respectively. For simplicity reasons we include the coupling constant in the
definition of B j( · · · ). The operators s j in Eq. (3.1.3) act in (C2) é N. They
are given by the tensor product

s j=1 é 1 é · · · é s é · · · é 1, (3.1.4)

where s is the spin operator, which is defined as s=(s1, s2, s3), with the
Pauli matrices si, i=1, 2, 3. In the definition (3.1.4) the spin operator s

defines the jth factor, the remaining factors are given by the identity
operator in C2. The Hilbert space HA is supplied by an orthonormal set of
basis vectors. The latter are eigenvectors of the operators s j

3 for j=1,..., N
with

1
2 s j

3 |m1,..., mNP=mj |m1,..., mNP (3.1.5)

and mj=± 1/2, j=1,..., N. The representation UA of the group SN in HA

is generated by

UA(s) |m1,..., mNP=|ms − 1(1),..., ms − 1(N)P, -s ¥ SN, (3.1.6)

which implies that

UA(s) s j — UA(s) s jUA(s)−1=s s(j) (3.1.7)

for j=1,..., N and for every s ¥ SN.
The above relations allow us to redraft the general theory in a simpler

and more transparent form. From Eq. (3.1.7) together with

UB(s)B j( · · · ) — UB(s)B j( · · · ) UB(s)−1=B s(j)( · · · ) (3.1.8)

we see that the interaction term (3.1.3) commutes in fact with the action of
the group SN in the Hilbert space HA é HB. Seeking for the decomposition
of the operator Hint corresponding to Eq. (2.1.56), we first decompose the
operators s j acting in HA into their isotypic components Lm(HA). The cor-
respondent projector from L(HA) onto Lm(HA) is

Pm
A=

dm

N!
C

s ¥ SN

qm(s)a UA(s). (3.1.9)
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With Eq. (3.1.7), and remembering that the characters qm(s) are real, we get

smj — Pm
As j —

dm

N!
C

s ¥ SN

qm(s) s s(j), (3.1.10)

which can be rewritten as

smj= C
N

n=1
am

jnsn (3.1.11)

with

am
jn —

dm

N!
C

{s ¥ SN | s(j)=n}
qm(s)=˛

1
N if m=[N]

djn − 1
N if m=[N − 1, 1]

0 otherwise.

(3.1.12)

This relation is proven in Appendix A. From Eqs. (3.1.11) and (3.1.12) we
obtain finally

smj=˛;N
n=1 sn/N if m=[N]

s j − ;N
n=1 sn/N if m=[N − 1, 1]

0 otherwise.

(3.1.13)

The decomposition of the operatorsB j( · · · )

Bmj=Pm
BB

j( · · · ) (3.1.14)

is found in a similar way. From Eq. (3.1.8) we get

Bmj=˛;N
n=1 B

n( · · · )/N if m=[N]

B j( · · · ) − ;N
n=1 B

n( · · · )/N if m=[N − 1, 1]

0 otherwise.

(3.1.15)

The interaction Hamiltonian Hint (3.1.3) can be decomposed according to
Eqs. (2.1.51) and (2.1.56). With Eqs. (3.1.11) and (3.1.12) it reduces to

Hint= C
3

a, b=1
g[N]

ab H[N]
ab +g[N − 1, 1]

ab H[N − 1, 1]
ab , (3.1.16)

where

g[N]
ab =g[N − 1, 1]

ab =dab
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and

H[N]
ab =S[N]

a é B[N]
b , (3.1.17)

H[N − 1, 1]
ab = C

d[N − 1, 1]

l=1
S[N − 1, 1]

al é B[N − 1, 1]
bl , (3.1.18)

with

S[N]= C
N

n=1
sn B[N]=

1
N

C
N

n=1
Bn( · · · ), (3.1.19)

S[N − 1, 1]
l =`N C

N

n=1
an

l sn B[N − 1, 1]
l =

1

`N
C
N

n=1
an

lB
n( · · · ), (3.1.20)

and l=1,..., d[N − 1, 1]=N − 1. The real coefficients an
l define N − 1 ortho-

normal basis vectors that span the vector subspace of dimension N − 1
corresponding to the isotypic component of type m=[N − 1, 1]. They thus
satisfy the orthogonality relations

C
N

n=1
an

l =0 C
N

n=1
an

l an
k=dlk, (3.1.21)

where the first equation is a consequence of the orthogonality of the isotypic
components of types [N − 1, 1] and [N]. Consequently, we have also

C
d[N − 1, 1]

l=1
an

l am
l =dnm −

1
N

. (3.1.22)

The operators S[N − 1, 1]
l and B[N − 1, 1]

l transform as

UA(s) S[N − 1, 1]
l UA(s)−1= C

d[N − 1, 1]

k=1
S[N − 1, 1]

k d[N − 1, 1]
kl (s),

UB(s) B[N − 1, 1]
l UB(s)−1= C

d[N − 1, 1]

k=1
B[N − 1, 1]

k d[N − 1, 1]
kl (s).

(3.1.23)

After insertion of the definitions (3.1.19) and (3.1.20), and using also
Eq. (3.1.7) we find

d[N − 1, 1]
kl (s)= C

N

n=1
a s(n)

k an
l . (3.1.24)

Coherent and Dissipative Spin Dynamics in N-Electron Systems 421



Comparing the decomposition (3.1.16) with the corresponding equation
(2.1.56) of the general theory of Section 2.1, we note that presently only
two isotypic components of types m=[N], [N − 1, 1] contribute and that
the operators H[N]

int and H[N − 1, 1]
int replace the operators Hl

ab in Eq. (2.1.56).
Further comparison between the definitions (3.1.17), (3.1.18), and (2.1.51)
shows that the operators S[N] and S[N − 1, 1]

l , l=1,..., d[N − 1, 1]=N − 1 take
the part of the operators Am

al, l=1,..., dm, whereas the operators B[N] and
B[N − 1, 1]

l replace the operators Bm
bl/`dm. Moreover, we note that the indices

a and b in Eq. (2.1.56) correspond to the spatial components of the axial
vectors B and S defined in Eqs. (3.1.19) and (3.1.20), and thus we have
presently a=1, 2, 3 and b=1, 2, 3.

3.2. Electronic Spins and Spatial Rotations

We will now take into account the action of spatial rotations in the
Hilbert space HA and in L(HA). The action in HA of a rotation R(w)
characterized by an axial vector of rotation w is described by the unitary
operator

VA(w)=exp( − iw · S), S=S[N]/2, (3.2.1)

where the self-adjoint operators S[N] are defined in Eq. (3.1.19). Actually,
the correspondence R(w) - VA(w) defines a unitary ray representation of
the rotation group SO(3) in the group of unitary operators in L(HA).
From the above definition and from the commutation relations of the
operators s j

a introduced in (3.1.4) we obtain the transformation rules

VA(w) s j
aVA(w)−1= C

3

b=1
s j

bRb
a (w), j=1,..., N, (3.2.2)

where the matrix (Rb
a (w)) describes the rotation in cartesian coordinates.

With the definitions (3.1.19) and (3.1.20) we get

VA(w) Sm
alVA(w)−1= C

3

b=1
Sm

blR
b
a (w), l=1,..., dm. (3.2.3)

Equations (3.2.2) and (3.2.3) describe the action of the rotation group on
the operators Sm

l . They play a similar role as the relations (3.1.23). Now,
according to Eq. (3.1.7) and to the definition (3.1.19), the unitary operators
UA(s), s ¥ SN commute with the generators S. Therefore the representations
of the group SN and of the rotation group in L(HA) commute, i.e.,

[VA(w), UA(s)]=0, -w, s. (3.2.4)
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These commutation relations imply that the operator VA(w) commutes also
with the partially isometric operators Pl

Aik given by Eq. (2.1.20). For our
convenience, we will from now on use the relation (3.1.1) to switch between
the two notations l Y S associated with the group SN. Thus, each subspace
HS

Ai generated by the vectors |M, S, iP, M=−S,..., +S for fixed S and i, is
invariant with respect to the representation VA(w) of the rotation group, so
that

VA(w) HS
Ai=HS

Ai, -w, S, i. (3.2.5)

According to Eq. (2.1.25), which reads in the new notation

PS
Aik |M, S, kP=|M, S, iP, (3.2.6)

we have

VA(w) |M, S, iP= C
S

MŒ=−S
|MŒ, S, iP rS

MŒM(w), (3.2.7)

where rS
MŒM(w) are the matrix elements of a standard representation of the

rotation group of type S. Their elements are independent of i=1,..., dl.
For our further considerations, it is convenient to introduce the direct

product G of the permutation group SN and the group of rotations SO(3)

G=SN × SO(3). (3.2.8)

The correspondence

WA: G ¦ (s, w) - UA(s) VA(w)=WA(s, w) (3.2.9)

defines a unitary ray representation of the group G in L(HA). Clearly, the
isotypic components HS

A of HA relatively to UA and VA are also irreducible
with respect to the representation WA of G. Thus we can write

WA(s, w) |M, S, iP= C
dl

iŒ=1
C
S

MŒ=−S
DS

(MŒ, iŒ)(M, i)(s, w) |MŒ, S, iŒP. (3.2.10)

The coefficients

DS
(MŒ, iŒ)(M, i)(s, w)=dl

iŒi(s) rS
MŒ, M(w) (3.2.11)
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denote the matrix elements of the irreducible representation of G carried by
the isotypic component HS

A. We now have the transformation rules

WA(s, w) s j
aWA(s, w)−1= C

3

b=1
s s(j)

b Rb
a (w), (3.2.12)

and consequently

WA(s, w) Sm
alWA(s, w)−1= C

dm

k=1
C
3

b=1
Sm

bkdm
kl(s) Rb

a (w). (3.2.13)

The operators Sm
al for fixed m are the components of an irreducible tensor

operator of type (m, 1) with respect to the representation WA of G. Using
the Wigner–Eckart theorem, we can write the matrix element of these
operators as

OMŒ, SŒ, iŒ| Sm
al |M, S, iP= C

alŒ

c=1
cm l lŒ

l i (iŒ, c)C
1SSŒ

aMMŒOSŒ|| Sm ||SPc. (3.2.14)

In this expression, the symbols cm l lŒ

l i (iŒ, c) denote the Clebsch–Gordan coeffi-
cients associated with the decomposition of the tensor product of irreduc-
ible representations of SN of types l and m. Let us recall that the types l, lŒ

are associated with S, SŒ according to Eq. (3.1.1), and that the multiplicity
of the irreducible components of type lŒ in the above tensor product of
representations is given by alŒ. The symbols C1 S SŒ

aMMŒ denote the Clebsch–
Gordan coefficients associated with the decomposition of the tensor
product of the irreducible ray representations of SO(3) of types S and 1. (44)

As a direct consequence of Eq. (3.2.14), we obtain the selection rule

OMŒ, SŒ, iŒ| Sm
al |M, S, iP=0 if |S − SŒ| > 1 or if S=SŒ=0. (3.2.15)

3.3. Decomposition of the Interaction Hamiltonian

We search for the correspondent of the decomposition (2.6.26) of the
interaction operator Hint. Exploiting the isomorphism (2.6.19), we will
describe the action of Hint in the space

Â
l ¥ LAB

Ha l
A é Ha l̃

B.
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The operator Hint is presently given by Eqs. (3.1.16)–(3.1.18). Expressed in
the form of Eq. (2.1.56), it reads

Hint=H[N]
int +H[N − 1, 1]

int , (3.3.1)

where the operators H[N]
int and H[N − 1, 1]

int are given by

H[N]
int =C

a

S[N]
a é B[N]

a (3.3.2)

and

H[N − 1, 1]
int = C

d[N − 1, 1]

l=1
C
a

S[N − 1, 1]
al é B[N − 1, 1]

al . (3.3.3)

Equations (3.3.2) and (3.3.3) are a convenient starting point to calculate
the matrix elements OM, b, S| Hint |MŒ, bŒ, SŒP. For the operators H[N]

int the
result is immediate. In this case, the operators S[N]

a and B[N]
b commute with

the unitary representation UA and UB of SN in the corresponding Hilbert
spaces HA and HB, and the calculation of the reduced matrix elements of
these operators relatively to the action of the group SN becomes trivial. We
obtain

OM, S, i| S[N]
a |MŒ, SŒ, iŒP=dSSŒdiiŒOM, S|| S[N]

a ||MŒ, SP,

Ob, S̃, k| B[N]
b |bŒ, S̃Œ, kŒP=dSSŒdkkŒOb, S̃|| B[N]

b ||bŒ, S̃P.
(3.3.4)

In the last equation, S̃ denotes the dual l̃ of the type l, which is related
with the spin S via the correspondence (3.1.1).

We are now in the position to write the corresponding of the expres-
sion (2.6.12) for H[N]

ab . Presently, m=[N] corresponds to the trivial repre-
sentation of SN, and al=bl̃=1, the type l corresponding to S. The coef-
ficient hlmlŒ

cd in Eq. (2.6.12) is then replaced by dSSŒ, and the summation
indices c and d can be omitted. We thus find

OM, b, S| H[N]
ab |MŒ, bŒ, SŒP=dSSŒOM, S|| S[N]

a ||MŒ, SPOb, S̃|| B[N]
b ||bŒ, S̃P.

(3.3.5)

We note that the interaction terms H[N]
ab cannot generate a change of the

total spin of the subsystem A.
The correspondents of the operators AlmlŒ

ca and B l̃ml̃Œ

db defined in Eqs. (2.6.22)
and (2.6.23) will be replaced by SS[N] SŒ

a and BS[N] SŒ

b /`dl, respectively.
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According to their definitions, the matrix elements of SS[N] SŒ

a and BS[N] SŒ

b

read

OM, S| SS[N] SŒ

a |MŒ, SŒP=OM, S|| S[N]
a ||MŒ, SŒP,

Ob, S̃| BS[N] SŒ

b |bŒ, S̃ŒP =Ob, S̃|| B[N]
b ||bŒ, S̃ŒP.

(3.3.6)

As an immediate consequence of Eq. (3.2.14), the reduced matrix elements
can be written as

OM, S|| S[N]
a ||MŒ, SŒP=C1 SŒ S

a MŒ MOS|| S[N] ||SŒP. (3.3.7)

Here C1 SŒ S
a MŒ M denotes the Clebsch–Gordan coefficients associated with the

rotation group, and OS|| S[N] ||SŒP denotes the reduced matrix elements
with respect to the action of the full group G=SN × SO(3).

The handling of the operators H[N − 1, 1]
ab is somewhat more compli-

cated. To discuss the matrix elements of these terms, we have first to
determine the selection rules for the irreducible tensor operators S[N − 1, 1]

al

defined in Eq. (3.1.20). Some of them are already provided by Eq. (3.2.15).
However, to get more insight of the situation we have to determine the
Clebsch–Gordan series corresponding to the tensor product of the irreduc-
ible representations of types [N − 1, 1] and [N/2+S, N/2 − S] of the
group SN

D[N − 1, 1] é D[N/2+S, N/2 − S]=Â
lŒ

alŒD (lŒ). (3.3.8)

The multiplicities of the irreducible representations of type lŒ contributing
to the decomposition are denoted alŒ. Since presently we only need to con-
sider irreducible representations of types lŒ=[N/2+SŒ, N/2 − SŒ], we
have to evaluate

a[N/2+SŒ, N/2 − SŒ]=
1

N!
C

s ¥ SN

q[N/2+SŒ, N/2 − SŒ](s)a q[N − 1, 1](s) q[N/2+S, N/2 − S](s).
(3.3.9)

In Appendix B it is shown that

a[ N
2

+SŒ, N
2

− SŒ]=˛1 if |S − SŒ| [ 1 and if (SŒ, S) ] (N/2, N/2)

0 otherwise.
(3.3.10)
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We thus see that the multiplicity a[ N
2

+SŒ, N
2

− SŒ] cannot exceed 1. Conse-
quently, we get from the Wigner–Eckart theorem

OM, S, i| S[N − 1, 1]
al |MŒ, SŒ, iŒP=c[N − 1, 1]

l
lŒ

iŒ
l
iOM, S|| S[N − 1, 1]

a ||MŒ, SŒP,
(3.3.11)

where the prefactor c[N − 1, 1]
l

lŒ

iŒ
l
i denotes the Clebsch–Gordan coefficients

associated with the decomposition (3.3.8). In analogy with Eq. (3.3.7) we
have

OM, S|| S[N − 1, 1]
a ||MŒ, SŒP=C1

a
SŒ

MŒ

S
MOS|| S[N − 1, 1] ||SŒP, (3.3.12)

where OS|| S[N − 1, 1] ||SŒP denotes the reduced matrix elements with respect
to the action of the full group G=SN × SO(3).

Similar results can be derived for the operators B[N − 1, 1]
bl . Exploiting

the irreducible tensor character of these operators, we find from the
Wigner–Eckart theorem

Ob, S̃, k| B[N − 1, 1]
bl |bŒ, S̃Œ, kŒP=c[N − 1, 1]

l
l̃Œ

kŒ

l̃
kOb, S̃|| B[N − 1, 1]

b ||bŒ, S̃ŒP. (3.3.13)

In the above expression, the Clebsch–Gordan coefficient c[N − 1, 1]
l

l̃Œ

kŒ

l̃
k corre-

sponds to the decomposition

D[N − 1, 1] é D l̃=Â
lŒ

blŒD (lŒ), (3.3.14)

where l̃ is dual with respect to the type l=[N
2 +S, N

2 − S]. Actually, since

ql̃(s)=s(s) ql(s), -s ¥ SN,

we have

bl̃Œ=alŒ, -lŒ. (3.3.15)

We are now in the position to specify the correspondent of the relation
(2.6.12) for the operators H[N − 1, 1]

ab . It reads

OM, b, S| H[N − 1, 1]
ab |MŒ, bŒ, SŒP

=gSSŒOM, S|| S[N − 1, 1]
a ||MŒ, SŒPOb, S̃|| B[N − 1, 1]

b ||bŒ, S̃ŒP, (3.3.16)

where

gSSŒ= C
dl

i, j=1
C
dlŒ

iŒ, jŒ=1
C
dm

k=1
cl

i
l̃
j

[1N]
1 clŒ

iŒ
m
k

l
(i, c) c l̃Œ

jŒ
m
k

l̃
(j, d) clŒ

iŒ
l̃Œ

jŒ
[1N]

1 (3.3.17)
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replaces the coefficients hlmlŒ

cd of Eq. (2.6.18). Presently, the indices c (=1),
d (=1), and m (=[N − 1, 1]) are fixed. They will be omitted in the follow-
ing. The other parameters are

l=[N/2+S, N/2 − S] lŒ=[N/2+SŒ, N/2 − SŒ]

dl=dl̃ dlŒ=dl̃Œ.

The correspondents of the operators AlmlŒ

ca and B l̃ml̃Œ

db /`dm for m=
[N − 1, 1] defined in Eqs. (2.6.22) and (2.6.23) will be denoted SS[N − 1, 1] SŒ

a

and B S̃[N − 1, 1] S̃Œ

b , respectively. From the definitions we get immediately

OM, S| SS[N − 1, 1] SŒ

a |MŒ, SŒP=OM, S|| S[N − 1, 1]
a ||MŒ, SŒP,

Ob, S̃| BS[N − 1, 1] SŒ

b |bŒ, S̃ŒP=Ob, S̃|| B[N − 1, 1]
b ||bŒ, S̃ŒP.

(3.3.18)

Summarizing our results, and taking into account the definitions (3.3.6)
and (3.3.18), we get finally for the block operators HSSŒ

int

HSSŒ

int = C
3

a=1
(dSSŒS

S[N] S
a é B S̃[N] S̃

a +gSSŒS
S[N − 1, 1] SŒ

a é B S̃[N − 1, 1] S̃Œ

a ), (3.3.19)

where we have implicitly used the isomorphism (2.6.19) between HS
A+B and

the tensor product Ha S
A é Ha S̃

B.
To complete the above result, we still mention some direct conse-

quences of Eq. (3.2.15), which are obtained using the definitions (3.3.6) and
(3.3.11). We have

SS[N] SŒ

a =0 if S ] SŒ, (3.3.20)

and for m ] [N]

SSmSŒ

a =0 if |S − SŒ| > 1, (3.3.21)

and consequently,

HSSŒ

int =0 if |S − SŒ| > 1, (3.3.22)

i.e., the interaction couples only between states with total spins differing at
most by 1.

3.4. Polarization of the Spin Subsystem

Following the general ideas of Section 2.7, we will now discuss the
influence of the subsystem B on the spin-system A. According to our
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general assumptions, the subsystem B, which presently represents the
spatial degrees of freedom of the electrons, fluctuates around a given
statistical equilibrium. The latter is described by a density matrix r̄0

B

composed of blocks r̄ S̃ 0
B , each block r̄ S̃ 0

B satisfying the commutation rela-
tions (2.7.2). In Section 2.7 we have already shown that the first-order
contribution of the interaction between both subsystems gives rise to a
polarization of the spin system A. It corresponds to the presence of a time-
independent external force, the latter being determined by the mean values
(2.7.6). Presently, Eq. (2.7.6) reads

b S̃mS̃ 0
b =

Tr(r̄ S̃ 0
B B S̃mS̃

b )

Tr(r̄ S̃ 0
B )

with m=[N], [N − 1, 1]. (3.4.1)

Comparing the expressions (3.3.19) and (2.6.31) we see that we have now

gS[N] SŒ

ab =dSSŒdab,

gS[N − 1, 1] SŒ

ab =gSSŒdab,

so that the Hamiltonian (2.7.5) describing the dynamical effect of this force
on the spin system A becomes in the Schrödinger picture

H̄S
A pol=C

a

(b S̃[N] S̃ 0
a SS[N] S

a +gSSb S̃[N − 1, 1] S̃ 0
a SS[N − 1, 1] S

a ). (3.4.2)

From the definitions (3.3.6), (3.3.18) and the relations (3.3.7), (3.3.12) we
get

SS[N − 1, 1] S
a =fN

S SS[N] S
a (3.4.3)

with the numerical factor

fN
S =

OS|| S[N − 1, 1] ||SP
OS|| S[N] ||SP

. (3.4.4)

Accordingly, we may write

H̄S
A pol= C

3

a=1
WS

a SS[N] S
a (3.4.5)

where

WS
a =b S̃[N] S̃ 0

a +gSS fN
S b S̃[N − 1, 1] S̃ 0

a . (3.4.6)
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The above operators H̄S
A pol are the constituents of the hamiltonian

term H̄A pol acting in HaA. The operator H̄A pol is diagonal with respect to
the total spin S, i.e., it has a block structure. In Section 2.7 we have shown
that there is a one-to-one correspondence between H̄A pol and the Hamil-
tonian HA pol acting in HA, both being related by the mapping (2.2.18)

mA(HA pol)=H̄A pol. (3.4.7)

We have further seen that the Hamiltonian HA governing the free evolution
of the subsystem A can be redefined to include the polarization due to the
subsystem B. Since presently our initial Hamiltonian HA is trivial, the new
Hamiltonian, which will again be denoted HA, is

HA=m−1
A (H̄A) with H̄A=H̄A pol. (3.4.8)

We note that both, H̄A and HA, are completely determined by Eq. (3.3.2).
The redefined interaction term now reads

Hint − HA pol é 1B.

It will again be denoted Hint in the following. We further make the repla-
cement

B S̃mS̃Œ

b − b S̃mS̃ 0
b 1 S̃

BdS̃S̃Œ 0 B S̃mS̃Œ

b (3.4.9)

for m=[N] and [N − 1, 1], which does of course not affect the validity of
the expressions (3.3.19). After the above redefinitions, we get

Tr(r̄ S̃ 0
B BIS̃mS̃

b (t)) — 0, (3.4.10)

which is the correspondent of Eq. (2.7.8).
Thus prepared, we can now specify the basis vectors |M, S, iP.

According to our conventions expressed in Eqs. (2.1.19) and (2.1.27), we
have

UA(s) |M, S, iP= C
dl

k=1
|M, S, kP dl

ki(s) (3.4.11)

and

HA |M, S, iP=ES
M |M, S, iP (3.4.12)
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with l=[N/2+S, N/2 − S]. The spin Hamiltonian H̄A defined in (3.4.8),
which governs the free evolution of the spin system, corresponds to the
diagonal block operators

H̄S
A= C

3

a=1
WS

a SS[N] S
a , (3.4.13)

where the parameters WS
a are defined in Eq. (3.4.6).

Thus prepared, we now look for the solution of Eq. (3.4.12), where the
spin Hamiltonian H̄S

A is given by Eq. (3.4.13). For convenience, we first
perform a rotation such that the vector WS coincides with the z-axis.
According to Eq. (3.2.1), the action of a rotation corresponding to an axial
rotation vector wS in Ha S

A is described by

V̄S
A(wS)=exp( − iwS · SSS) (3.4.14)

with

wS · WS=0, wS · e3=0, and R(wS) WS=||WS|| e3, (3.4.15)

where SSS is the operator S (3.2.1) restricted to the subspace of the irreduc-
ible representation of type S. These operators are the irreducible generators
of a representation of the rotation group with the dimension 2S+1. We
have

V̄S
A(wS) H̄S

AV̄S
A(wS)−1=||WS|| SS[N] S

3 . (3.4.16)

The eigenvalues of the operator H̄S
A are thus non-degenerate and real.

According to Eq. (3.4.16), they are directly related with the eigenvalues of
SS[N] S

3 , and we have

ES
M=2M ||WS||, M=−S,..., +S. (3.4.17)

Similarly, as can be seen from Eq. (3.4.16), the corresponding eigenvectors
of H̄S

A in the unrotated system Ha S
A satisfy the relation

|M, SP=V̄S
A(wS)−1 |M, S, 1P, (3.4.18)

where

SS[N] S
3 |M, S, 1P=2M |M, S, 1P. (3.4.19)
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Finally, the whole set of basis vectors |M, S, iP may be generated from the
vectors |M, S, 1P using the correspondents of the partially isometric opera-
tors (2.1.20) in Eq. (2.1.26)

PS
A i 1 |M, S, 1P=|M, S, iP. (3.4.20)

We are now in the position to complete the selection rules (3.3.20) and
(3.3.21). From Eq. (3.4.19), the relations (3.2.14), and the well-known
properties of the Clebsch–Gordan coefficients associated with the group of
rotations we obtain

OMŒ, S, iŒ| Sm
al |M, S, iP=0 if |M − MŒ| > 1. (3.4.21)

Together with the definitions (3.3.6) and (3.3.11) we get the selection rules

OM, S| SSmS
a |MŒ, SP=0 if |M − MŒ| > 1, (3.4.22)

which hold for any m.

3.5. Master Equations

We now come back to the Markovian master equations (2.9.9), which
are determined by the coefficients Cr aŒ1aŒ2

l a1a2
. Adopting the notation based on

the bijective correspondence (3.1.1) between the total spin S and the type l

of the irreducible representations, the expression (2.10.2) for these coeffi-
cients reads

CSŒMŒ1MŒ2
SM1M2

=C SŒMŒ1MŒ2
0 SM1M2

+
i
(

(dSSŒ(dM1MŒ1
(HS

MŒ2M2
+iGS

MŒ2M2
) − (HS

M1MŒ1
− iGS

M1MŒ1
) dM2MŒ2

)).
(3.5.1)

In Section 2.10 we have already seen that Cr aŒ1aŒ2
l a1a2

can be set to zero when
the transition energies are different. Thus, as in Eq. (2.10.1), we may
assume

CSŒMŒ1MŒ2
SM1M2

=0 if wS S
M1M2

] wSŒ SŒ

MŒ1MŒ2
. (3.5.2)

Equation (3.4.17) yields

wS S
M1M2

=
2
(

||WS|| (M1 − M2), (3.5.3)
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and Eq. (2.10.5) becomes

C SŒMŒ1MŒ2
0 SM1M2

=
1
(

C
ma

C
mŒaŒ

q S̃ŒmS̃mŒS̃Œ

a aŒ (wSŒ S
MŒ1M1

)

×OM1, S| SSmŒSŒ

aŒ |M −

1, SŒPOM −

2, SŒ| SSŒmS
a |M2, SP, (3.5.4)

where

q S̃ŒmS̃mŒS̃Œ

a aŒ (w)=
1
(

F
.

−.

c S̃ŒmS̃mŒS̃Œ

a aŒ (y) e iwy dy (3.5.5)

with

c S̃ŒmS̃mŒS̃Œ

a aŒ (y)=
Tr(r̄ S̃Œ 0

B BIS̃ŒmS̃
a (tŒ) BIS̃mŒS̃Œ

aŒ (tœ))

Tr(r̄ S̃Œ 0
B )

. (3.5.6)

In accordance with Eq. (2.10.7), the susceptibility satisfies

q S̃ŒmS̃mŒS̃Œ

a aŒ (w)a=q S̃ŒmŒS̃mS̃Œ

aŒ a (w). (3.5.7)

As before, the types m or mŒ can be identified with the partitions [N] and
[N − 1, 1]. Now, from Eq. (3.3.20) we know that

SS[N] SŒ

a =0 if S ] SŒ. (3.5.8)

Moreover, inserting the definitions (3.3.18) into the relation (3.3.12), we
have already seen that

SS[N − 1, 1] S
a =fN

S SS[N] S
a , (3.5.9)

where the numerical factor fN
S is given by Eq. (3.4.4). Thus, evaluating

Eq. (3.5.4) for S=SŒ, we obtain

C SMŒ1MŒ2
0 SM1M2

=
1
(

C
3

a, aŒ=1
qS

aaŒ(wS S
MŒ1M1

)

×OM1, S| SS[N] S
aŒ |M −

1, SPOM −

2, S| SS[N] S
a |M2, SP, (3.5.10)

where

qS
aaŒ(w)=q S̃[N] S̃[N] S̃

a aŒ (w)+fN
S (q S̃[N] S̃[N − 1, 1] S̃

a aŒ (w)+q S̃[N − 1, 1] S̃[N] S̃
a aŒ (w))

+(fN
S )2 q S̃[N − 1, 1] S̃[N − 1, 1] S̃

a aŒ (w). (3.5.11)
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The factor fN
S being real, Eq. (3.5.7) implies also that

qS
aaŒ(w)a=qS

aŒa(w). (3.5.12)

From the properties (3.4.22) we find that

C SMŒ1MŒ2
0 SM1M2

=0 if |M1 − M −

1 | > 1 or |M2 − M −

2 | > 1. (3.5.13)

Similarly, we get for S ] SŒ

C SŒMŒ1MŒ2
0 SM1M2

=
1
(

C
3

a, aŒ=1
qS( ± )

aaŒ (wSŒ S
MŒ1M1

)

×OM1, S| SS[N − 1, 1] SŒ

aŒ |M −

1, SŒPOM −

2, SŒ| SSŒ[N − 1, 1] S
a |M2, SP,

(3.5.14)

where we have introduced the short-hand notation

qS( ± )
aaŒ (w)=q S̃Œ[N − 1, 1] S̃[N − 1, 1] S̃Œ

a aŒ (w) (3.5.15)

for SŒ=S ± 1. By virtue of Eq. (3.5.7) we have

qS( ± )
aaŒ (w)a=qS( ± )

aŒa (w). (3.5.16)

From the properties (3.2.15) we further get that

C SŒMŒ1MŒ2
0 SM1M2

=0 if |S − SŒ| > 1. (3.5.17)

Let us now have a look at the matrix elements of the operators ḠA

and DH̄A introduced in Section 2.10. From the definition (2.10.15) we get
immediately that the matrix elements of ḠA are equal to zero for states with
different spins. Moreover, according to Eq. (2.10.1) and to the definition
(2.10.3), they are also zero for states with different energies. We thus have

GS
MMŒ=0 if wS S

MMŒ ] 0, (3.5.18)

and otherwise, for S \ 1,

GS
MMŒ=

(

2
1 C

S

Mœ=−S
C SMŒM

0 SMœMœ+ C
S − 1

Mœ=−S+1
C SMŒM

0 S − 1MœMœ+ C
S+1

Mœ=−S − 1
C SMŒM

0 S+1MœMœ
2 .

(3.5.19)

Similar relations hold for the matrix elements of the operator DH̄A defined
by Eq. (2.10.13). From the definitions (2.10.1) and (2.10.3) it is easily seen
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that they are zero for states with different spins as well as for states with
different energies, i.e., we have in particular

HS
MMŒ=0 if wS S

MMŒ ] 0, (3.5.20)

and otherwise, by virtue of Eqs. (2.10.9) and (3.5.4),

HS
MMŒ=− 1

2 C
ma

C
mŒaŒ

C
SœMœ

q̄ S̃mS̃œmŒS̃
a aŒ (wS Sœ

MŒMœ)

×OM, S| SSmSœ

a |Mœ, SœPOMœ, Sœ| SSœmŒS
aŒ |MŒ, SP, (3.5.21)

where q̄ S̃mS̃œmŒS̃
a aŒ (w) is the Fourier transform of E(y) c S̃mS̃œmŒS̃

a aŒ (y), the function
c S̃mS̃œmŒS̃

a aŒ (y) being defined by Eq. (3.5.6). As we have seen before, the types
m and mŒ can be identified with the partitions [N] and [N − 1, 1]. In this
particular situation we have also

q̄ S̃mS̃œmŒS̃
a aŒ (w)a=q̄ S̃mŒS̃œmS̃

aŒ a (w). (3.5.22)

Taking account of the properties (3.5.8) and (3.5.9), the matrix elements
HS

MMŒ can be written as

HS
MMŒ=H(0) S

MMŒ+H(−) S
MMŒ +H(+) S

MMŒ (3.5.23)

with

H (0) S
MMŒ=− 1

2 C
3

a, aŒ=1
C
S

Mœ=−S
q̄ (0) S

a aŒ(wS S
MMŒ)

×OM, S| SS[N] S
a |Mœ, SPOMœ, S| SS[N] S

aŒ |MŒ, SP, (3.5.24)

H ( ± ) S
MMŒ =− 1

2 C
3

a, aŒ=1
C
Sœ

Mœ=−Sœ

q̄ ( ± ) S
a aŒ(wS Sœ

MMŒ)

×OM, S| SS[N − 1, 1] Sœ

a |Mœ, SœPOMœ, Sœ| SSœ[N − 1, 1] S
aŒ |MŒ, SP,

(3.5.25)

and Sœ=S ± 1. In the above expressions we have introduced the short-
hand notations

q̄ (0) S
a aŒ(w)=q̄ S̃[N] S̃[N] S̃

a aŒ (w)+fN
S (q̄ S̃[N] S̃[N − 1, 1] S̃

a aŒ (w)+q̄ S̃[N − 1, 1] S̃[N] S̃
a aŒ (w))

+(fN
S )2 q̄ S̃[N − 1, 1] S̃[N − 1, 1] S̃

a aŒ (w) (3.5.26)

and

q̄ ( ± ) S
a aŒ(w)=q̄ S̃[N − 1, 1] S̃œ[N − 1, 1] S̃

a aŒ (w), Sœ=S ± 1. (3.5.27)
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According to Eq. (3.5.22) we have

q̄ (0) S
a aŒ(w)a=q̄ (0) S

aŒ a (w),

q̄ ( ± ) S
a aŒ(w)a=q̄ ( ± ) S

aŒ a (w).
(3.5.28)

We are now prepared to discuss the Markovian master equations
governing the evolution of the spin system. The general form of these
equations in the Schrödinger picture is given by the relation (2.10.27).
Presently, the time averaged density matrix D(t̄) consists of diagonal
blocks DS

MMŒ(t̄) acting in Ha S
A. The operators DH̄A and ḠA have the same

structure. The diagonal blocks DH̄S
A are determined by the relations

(3.5.21) for the matrix elements. Similarly, the diagonal blocks ḠS
A are

obtained from Eq. (3.5.19). Exploiting this block structure, the master
equations (2.10.27) can be rewritten in the more explicit form

dDS(t̄)
dt̄

=
i
(

[DS(t̄), H̄S
A+DH̄S

A+H̄S
A ext(t̄)]

+CS
0 (DS(t̄)) −

1
(

{DS(t̄), ḠS
A}

+CS
+(DS+1(t̄))+CS

− (DS − 1(t̄)), (3.5.29)

where the mappings

CS
0 : L(Ha S

A) -L(Ha S
A)

CS
± : L(Ha S ± 1

A ) -L(Ha S
A)

(3.5.30)

are defined according to Eqs. (2.10.21) and (2.10.22),

CS
0 (DS(t̄))M1M2

= C
S

MŒ1, MŒ2=−S
C SMŒ1MŒ2

0 SM1M2
DS(t̄)MŒ1MŒ2

,

CS
± (DS ± 1(t̄))M1M2

= C
S ± 1

MŒ1, MŒ2=−(S ± 1)
C S ± 1MŒ1MŒ2

0 S M1M2
DS ± 1(t̄)MŒ1MŒ2

.

(3.5.31)

Clearly, in Eq. (3.5.29) DS(t̄) denotes the block operator associated with
the subspace Ha S

A. The first term, given by the commutator on the right-
hand side, describes the reversible part of the evolution. The free Hamilto-
nian H̄S

A is modified by the self-energy DH̄S
A, which is due to the interaction

with the bath. The term H̄S
A ext describes the effect of an external force. It

was already discussed at the end of Section 2.10. Presently we will consider
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the situation where the external force corresponds to a spatially uniform
magnetic field slowly varying with time. This is adequate to describe an
electromagnetic field in the limit of long wavelengths. In this case the
external Hamiltonian reads

H̄S
A ext(t̄)=−g

mB

2
B(t̄) · SS[N] S, (3.5.32)

where B(t̄) denotes the external magnetic field, g is a coupling constant,
and mB=e(/2m is the magnetic moment of the electron. The terms of the
second line in Eq. (3.5.29) represent the dissipative effect of the bath on the
‘‘states’’ of spin S. The two terms of the third line describe the transfer
driven between a ‘‘state’’ with spin S and ‘‘states’’ of spins S+1 and S − 1,
which is induced by the interaction of the spin subsystem with the bath.

Let us now briefly discuss the particular situation, where the statistical
equilibrium of the bath is described by the canonical ensemble for a fixed
temperature T. From the general results presented in Section 2.7 we know
already that

p0
SŒ e

−bESŒ

MŒ1 C SŒMŒ1MŒ2
0 S M1M2

=p0
S e−bES

M1 C S M2M1
0 SŒ MŒ2MŒ1

, (3.5.33)

where

p0
S=

1
ZB

Tr(e−bH̄S̃
B) (3.5.34)

denotes the probability of the bath to be in a statistical state compatible
with the spin S. From the above relation we get the important results

e−bES
MŒ1C S MŒ1MŒ2

0 S M1M2
=e−bES

M1C S M2M1
0 S MŒ2MŒ1

(3.5.35)

and

p0
S+1 e−bES+1

MŒ1 C S+1 MŒ1MŒ2
0 S M1M2

=p0
S e−bES

M1 C S M2M1
0 S+1 MŒ2MŒ1

. (3.5.36)

We now return to the general discussion of the Markovian master
equation (3.5.29). According to Eq. (2.10.14), the self-energy hamiltonian
term commutes with H̄A. Therefore, this term can be included in the free
Hamiltonian H̄A. It can formally be removed from Eq. (3.5.29), provided
that this self-energy term does not affect the change from the Schrödinger
picture to the interaction picture. This is the case in most situations of
physical interest. We further suppose that the term ||WS|| in Eq. (3.5.3)
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differs for different S. Under this assumption the energy levels of the
unperturbed spin system satisfy the conditions

wS S
M1M2

=wSŒ SŒ

MŒ1MŒ2
if and only if ˛S=SŒ and M1 − M2=M −

1 − M −

2

or

S ] SŒ and M1=M2 and M −

1=M −

2.

(3.5.37)

Now, condition (3.5.20) implies that the self-energy term, which according
to the commutation relation (2.10.14) can only couple between states
having the same total spin S, just changes the energy levels of the Hamil-
tonian H̄A according to

(H̄A+DH̄A) |M, SP=(ES
M+DES

M) |M, SP. (3.5.38)

The master equations (3.5.29) determine in particular the evolution of
the diagonal elements of the density matrix

pS
M(t̄)=DS

MM(t̄), (3.5.39)

which are usually referred to as ‘‘populations.’’ Together with the condi-
tions (3.5.37) we obtain

dpS
M(t̄)
dt̄

= C
M+1

MŒ=M − 1
(CS Q S

MŒ Q MpS
MŒ(t̄) − CS Q S

M Q MŒp
S
M(t̄))

+ C
S+1

MŒ=−(S+1)
(CS+1 Q S

MŒ Q M pS+1
MŒ (t̄) − CS Q S+1

M Q MŒ pS
M(t̄))

+ C
S − 1

MŒ=−(S − 1)
(CS − 1 Q S

MŒ Q M pS − 1
MŒ (t̄) − CS Q S − 1

M Q MŒ pS
M(t̄))

− i{(c (+) S
M (t̄) DS

MM+1(t̄) − c (+) S
M − 1 (t̄) DS

M − 1M(t̄))

− (c ( − ) S
M+1 (t̄) DS

M+1M(t̄) − c ( − ) S
M (t̄) DS

MM − 1(t̄))} (3.5.40)

with

C SŒ Q S
MŒ Q M=C SŒMŒMŒ

0 S M M , (3.5.41)
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which are real numbers according to Eqs. (2.10.19). The coefficients

c ( ± ) S
M (t̄)=g

mB

2(
OM ± 1, S| B(t̄) · SS[N] S |M, SP

=g
mB

2(
`S(S+1) − M(M ± 1) (B1(t̄) + iB2(t̄)) (3.5.42)

are associated with the external Hamiltonian, Eq. (3.5.32). They satisfy the
symmetry relations

c (+) S
M (t̄)a=c (−) S

M+1(t̄). (3.5.43)

Equations (3.5.40) govern the evolution of the spin populations. The first
sum on the right-hand side describes the population transfer between states
of the same total spin S but with MŒ=M ± 1. The second and the third
sums describe the population transfer between the state |S, MP and the
states |S ± 1, MŒP. The last two lines depending on c ( ± ) S

M (t̄) account for the
influence of the external magnetic field B(t̄) on the evolution of the popu-
lations. We note that they introduce a coupling between the diagonal and
the off-diagonal matrix elements of the density matrix DS(t̄). These off-
diagonal elements are also often denoted ‘‘coherences.’’

In the particular situation, where the statistical equilibrium of the bath
subsystem is given by the canonical ensemble corresponding to a tempera-
ture T > 0, the resulting statistical equilibrium of the spin subsystem satis-
fies the detailed-balance relations. Actually, referring to the relations
(3.5.33) we have

p SŒ

0 MŒ C
SŒ Q S

MŒ Q M=p S
0 M C S Q SŒ

M Q MŒ, (3.5.44)

with

p S
0 M=

1
ZA

p0
S e−bES

M (3.5.45)

and

ZA=C
S

p0
S ZS

A with ZS
A= C

S

M=−S
e−bES

M. (3.5.46)
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We now return to the general case. From Eq. (3.5.40) we can derive
the equations governing the evolution of the populations for a given total
spin S

pS(t̄)= C
S

M=−S
pS

M(t̄). (3.5.47)

We get

dpS(t̄)
dt̄

= C
S+1

MŒ=−(S+1)
CS+1 Q S

MŒ pS+1
MŒ (t̄) − C

S

MŒ=−S
CS Q S+1

MŒ pS
MŒ(t̄)

+ C
S − 1

MŒ=−(S − 1)
CS − 1 Q S

MŒ pS − 1
MŒ (t̄) − C

S

MŒ=−S
CS Q S − 1

MŒ pS
MŒ(t̄) (3.5.48)

with

CS Q SŒ

M = C
SŒ

MŒ=−SŒ

CS Q SŒ

M Q MŒ. (3.5.49)

The equations governing the evolution of the non-diagonal elements of the
density matrix, the so-called ‘‘ coherences,’’ read

d
dt̄

DS
MMŒ(t̄)= −

1
(

(GS
MM+GS

MŒMŒ+i(ES
M − ES

MŒ)+C SMMŒ

0 SMMŒ) DS
MMŒ(t̄)

+C SM − 1MŒ − 1
0 SMMŒ DS

M − 1MŒ − 1(t̄)+C SM+1MŒ+1
0 SMMŒ DS

M+1MŒ+1(t̄)

+i(c (0) S
M (t̄) − c (0) S

MŒ (t̄)) DS
MMŒ(t̄)

− i{(c (+) S
MŒ (t̄) DS

MMŒ+1(t̄) − c (+) S
M − 1(t̄) DS

M − 1MŒ(t̄))

− (c (−) S
M+1(t̄) DS

M+1MŒ(t̄) − c (−) S
MŒ (t̄) DS

MMŒ − 1(t̄))} (3.5.50)

for M ] MŒ, and where

c (0) S
M (t̄)=g

mB

2(
OM, S| B(t̄) · SS[N] S |M, SP=g

mB

(
MB3(t̄). (3.5.51)

Let us briefly discuss the role of the different terms on the right-hand side
of Eq. (3.5.50). The first line contains the self-interaction of DS

MMŒ(t̄) to the
coherent as well as to the dissipative evolution. The second line accounts
for the coupling with the other coherences corresponding to the same S and
the same difference of the M values. The last three lines describe the addi-
tional couplings in presence of an external magnetic field.
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Inspection of the above equations shows that populations and
coherences are not coupled in absence of an external time-dependent mag-
netic field B(t). This rather particular feature is a consequence of the
assumptions (3.5.37), which exclude accidental degeneracies between the
energy levels. It suggests that the evolution of a fermionic system may be
drastically changed in presence of a slowly time-varying electromagnetic
field.

Eq. (3.5.50) further shows that the coherences within a given block S
do not couple directly with the coherences associated with other spin
values. In this case we have a coupling between the coherences and the
populations belonging to the same spin S, which is described by the term
{ · · · } in Eq. (3.5.50). These populations are themselves coupled to the
populations corresponding to other spin values SŒ by virtue of the second
and the third term in Eq. (3.5.40).

Coupling between blocks corresponding to different total spins is
only provided by the coefficients C SŒMŒMŒ

0 SMM pSŒ

MŒ on the right-hand side of
Eq. (3.5.40). Thus, these terms are the only responsible for the spin relaxa-
tion of the system. We also note that, according to Eq. (3.5.17), only adja-
cent blocks S and SŒ with SŒ=S ± 1 are coupled.

4. SUMMARY AND CONCLUSIONS

We have presented a quantum statistical description of the ensemble-
averaged coarse grained evolution of the electronic spin properties in
N-electron systems embedded in a statistical environment. Let us here
recall the principal physical ideas and assumptions underlying our
approach. Starting from the fact that any quantum system of identical
particles is characterized by its spatial and internal properties, we have
introduced the Hilbert space H=HA é HB, where HA and HB describe the
internal and the spatial properties, respectively. The Hilbert space for a
N-fermion system is then provided by HA+B, the subspace of antisymmetric
tensors in H. The statistical evolution of an ensemble of N-fermion
systems was obtained from the time-dependence of the associated density
matrix. In order to determine its temporal behavior we had to delimit the
considered physical situation. Thus, we have supposed that the considered
system is quasi-degenerate with respect to changes of the internal proper-
ties, so that changes of the internal properties are possible with only small
changes of the energy of the N-fermion system. The bath was associated
with the spatial degrees of freedom. Due to the symmetry properties
induced by the indistinguishability of the electrons, the properties of the
subsystem A are described by the Hilbert subspaces Ha l

A, which are strictly
included in Hl

A, rather than in the factor subspace HA. We have shown
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that the standard quantum statistical approach can be adapted to this
situation. Following this approach, we have obtained the coupled Marko-
vian master equations (2.10.20). These equations can be generalized to
cover the evolution in presence of external forces, provided that the latter
can be considered to be constant on a time scale of the order of yevol

A (see
Eq. (2.10.27)).

The above results of Section 2 were obtained without referring to a
particular subspace HA, i.e., they apply to arbitrary fermions. In Section 3
we have considered the particular situation of N-electron systems, which is
clearly the most interesting from the physical point of view. In this case, the
internal fermionic properties are represented by the electronic spins, the
Hilbert space HA is given by the tensor product (C2) é N, and the total spin
S labels the irreducible representations of the permutation group carried by
HA. We have shown that the time-averaged density matrix describing the
evolution of the spin subsystem remains block-diagonal, each single block
corresponding to a different total spin S. Consequently, a statistical state
describing the spin subsystem is always compatible with the other observ-
ables associated with this subsystem. Accordingly, the total spin in a
quantum statistical ensemble gets a status similar to that of a classical
observable. We have expressed this feature by saying that the total electron
spin S satisfies a ‘‘ statistical superselection rule.’’

In Section 3.3 we have shown that the interaction operator couples
only between blocks corresponding to total spins S and SŒ differing at most
by 1. The first-order interaction terms give rise to a polarization of the spin
subsystem. Thus, similar to the effect of a time-independent external force,
the interaction with the bath leads to a fine-structure splitting. For conve-
nience, we have included the first-order terms in the Hamiltonian HA

describing the internal degrees of freedom. Exploiting the fact that the total-
spin operator generates the representation of the spatial rotations in HA,
we have obtained the required explicit basis in HA, by diagonalizing the
redefined Hamiltonian HA. Following the general approach of Section 2,
we have then obtained the Markovian master equations (3.5.29), which
describe the evolution of the spin subsystem. Analysis of these equations
shows that the above-mentioned restricted coupling of the interaction
Hamiltonian between blocks associated with different total spins S puts
severe constraints on the evolution of the spin subsystem. In fact, we can
distinguish between three different types of evolution, (i) a reversible
evolution involving the electronic states associated with a given total spin S,
(ii) an irreversible evolution among the same states, and (iii) an irreversible
evolution corresponding to changes of the total spin S in steps of 1 and
arbitrary changes of the magnetic numbers M. We find in particular that
global changes of the total spin S are always irreversible. The evolution of
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the electronic spin properties may thus be described as an irreversible
cascade process with steps DS=1. We expect different kinds of behavior,
depending on the relative importance of the three types of contribution.
The evolution (3.5.29) is determined by the coefficients C SŒMŒ1MŒ2

0 SM1M2
(3.5.4). At

the present stage, it is rather impossible to delimit the range of parameters,
which is adequate to describe real physical systems. For a given physical
system, the coefficients C SŒMŒ1MŒ2

0 SM1M2
may be changed in principle by changing

the imposed statistical equilibrium of the bath. It should be interesting to
look whether, besides the above-mentioned expected changes of the fine-
structure splittings, this dependence could be used to slow down the irre-
versible evolution and thus to increase the time domain for the coherent
evolution of type (i).

An important step in our approach was the exploitation of the iso-
morphism (2.6.19) and the resulting decomposition of the action of the
interaction operator Hint in the Hilbert space H=HA é HB presented in
Sections 2.1, 2.6, and 3.3. This description of Hint will also be crucial for
future extensions, which may be necessary to get a satisfactory description
of specific physical systems. In the present work, we have focused our
attention on the electronic degrees of freedom. This was sufficient to
understand the general aspects of the fermionic evolution. However, other
degrees of freedom may come into play in real physical systems. For
example, to study the dynamic magnetic response of a molecule deposited
on a substrate, it will possibly be adequate to account for eventual struc-
tural changes as a function of the substrate temperature, and thus to
include the vibrational degrees of freedom.

Further generalizations of our approach may be envisaged. Thus one
may want to treat situations, where our assumptions concerning the
dynamical behavior of the electronic spins and the electronic orbitals are
not satisfied. In our present approach, we have assumed that the typical
time scales for the evolution of the spins and for the evolution of the orbi-
tals are different, and that the bath correlation time ycorr

B is much smaller
than the typical evolution time of the spin properties yevol

A . This restriction
was necessary to obtain a description of the spin evolution in terms of a set
of master equations. Obviously, short bath-correlation times ycorr

B require a
sufficiently large effective dynamical coupling of the orbitals with the infi-
nite statistical environment. Depending on the physical situation, it is thus
quite possible that the above condition is not satisfied and that memory
effects have to be considered. The corresponding extension of the present
approach can be obtained following the lines discussed in refs. 14–23.

Finally, it should be noted that the master equations (3.5.29) may be
used in different manners. They offer a quantum statistically correct
description of the global evolution of the spin properties. Thus, without
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any further restrictions, the free parameters entering Eq. (3.5.29) may either
be taken as phenomenological parameters, to describe the experimentally
observed dynamical behavior of a given system, or they may be determined
from a microscopic description of the considered system.

APPENDIX A. PROOF OF THE RELATION (3.1.12)

We have to evaluate

al
jn=

dl

N!
C

{s ¥ SN | s(j)=n}
ql(s), j and n ¥ {1,..., N}, (A.1)

where l denotes the character of an irreducible representation of the group SN.
From Eq. (A.1) we get immediately

al
t(j) t(n)=al

jn, -j and n, -t ¥ SN, (A.2)

since

al
t(j) t(n)=

dl

N!
C

{s ¥ SN | st(j)=t(n)}
ql(s)=

dl

N!
C

{s ¥ SN | t − 1st(j)=n}

ql(t−1st)=al
jn,

where we have also used the fact that ql(t−1st)=ql(s). Equation (A.2)
implies

al
11=al

22= · · · =al
NN and al

jn=al
12, -j ] n. (A.3)

In addition, because of the orthogonality of the characters and since
q[N](s)=1, -s, we get from Eq. (A.1)

C
N

n=1
al

jn=
dl

N!
C

s ¥ SN

ql(s)=d[N]
l . (A.4)

Insertion of Eqs. (A.3) into Eq. (A.4) gives

al
11+(N − 1) al

12=dl
[N]. (A.5)

For l=[N] we obtain from Eq. (A.1) and from the dimensions (3.1.2)

a[N]
ij =

1
N

, -i, j=1,..., N. (A.6)
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The characters ql(s) associated with the isotypic components of type l of
the group SN are obtained from

ql(s)=
dl

N!
C

g ¥ SN

C
p ¥ PT[l]

C
q ¥ QT[l]

s(q) Eg(s−1gq−1p−1), (A.7)

where PT[l] (QT[l]) denotes the subgroup of horizontal (vertical) permuta-
tions, which is associated with a Young tableau T[l] corresponding to a
partition l of N. (45) The symbol s(q) denotes the signature of the permuta-
tion q, and Eg(gŒ) is defined as

Eg(gŒ)=˛1 if gŒ=g
0 otherwise.

Using the expression (A.7), we obtain from Eq. (A.1)

al
11=

dl

N!
C

{s ¥ SN | s(1)=1}
ql(s)

=
d2

l

(N!)2 C
{s ¥ SN | s(1)=1}

C
g ¥ SN

C
p ¥ PT[l]

C
q ¥ QT[l]

s(q) Eg(s−1gqp)

=
d2

l

(N!)2 C
g ¥ SN

C
p ¥ PT[l]

C
q ¥ QT[l]

s(q) d1
gqpg − 1(1)

=
d2

l

(N!)2 C
N

j=1
(N − 1)! C

p ¥ PT[l]

C
q ¥ QT[l]

s(q) d j
qp(j)

=
d2

l

N!
1
N

C
N

j=1

1 C
p ¥ PT[l]

d j
p(j)

21 C
q ¥ QT[l]

s(q) d j
q(j)

2 .

For l ] [N], the last factor in the previous expression is nonzero only if
l=[N − 1, 1] and if j is included in the first column of T[l]. In this case
we get

C
{q ¥ QT[l] | q(j)=j}

s(q)=1.

If j is also included in the first row, we have

C
p ¥ PT[l]

d j
p(j)=(N − 2)!,
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and if it is included in the second row

C
p ¥ PT[l]

d j
p(j)=(N − 1)!.

Thus, with the dimensions dl obtained from Eq. (3.1.2), we get

al
11=

d2
l

N!
1
N

((N − 1)!+(N − 2)!)=
d2

l

N!
(N − 2)!=

(N − 1)2

N!
(N − 2)!=1 −

1
N

and finally from Eqs. (A.6), (A.3), and (A.4)

al
jn=d[N − 1, 1]

l
1djn −

1
N
2 if l ] [N]. (A.8)

APPENDIX B. CLEBSCH–GORDAN SERIES FOR THE TENSOR

PRODUCT OF IRREDUCIBLE REPRESENTATIONS OF

SN OF TYPES [N−1, 1] AND [l1, l2]

Be al, l=1, 2,..., N the number of cycles of order l for a permutation
s ¥ SN. Obviously we have 0 [ al [ N, -l=1,..., N with

C
N

l=1
lal=N. (B.1)

Actually, a sequence {al}, l=1,..., N characterizes a class of conjugated
elements of SN. Our first objective is to prove that the character ql(s) of
the irreducible representation of type l=[l1, l2] with l1+l2=N is given
by

ql(s)=
1

2pi
F

C0

(1 − z) <N
l=1 (1+z l)al

zl2

dz
z

, (B.2)

where C0 denotes a circular path of integration of radius smaller than 1
surrounding z=0 in the trigonometric positive sense. The proof of the
above relation based on the general expression (A.7) is technically rather
difficult. In the present context it is more convenient to start from the
properties mentioned at the beginning of Section 3.1. For our present pur-
poses let us recall that the subspace of HA — (C2) é N, generated by the basis
vectors |M, S, iP for fixed S and M and i=1,..., dl, carries an irreducible
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representation of SN of type [N/2+S, N/2 − S]. Consequently, defining
the projectors

PM= C
N/2

S=M
C
dl

i=1
|M, S, iPOM, S, i|, 0 [ M [ N/2 (B.3)

we can write

C
N/2

S=M
q[N/2+S, N/2 − S](s)= C

N/2 − M

l2=0
q[l1, l2](s)=Tr(PMUA(s)) — gM(s), (B.4)

where UA denotes the unitary representation of SN in the Hilbert space HA,
which was defined in Eq. (3.1.6). Then, except for the trivial case q[N](s)
=1, we have

q[l1, l2](s)=gN
2

− l2
(s) − gN

2
− l2+1(s), l2 > 0, (B.5)

with

gM(s)=C
AM

Om1,..., mN | UA(s) |m1,..., mNP

=C
AM

Om1,..., mN | ms − 1(1),..., ms − 1(N)P

=C
AM

D
N

i=1
dmi

ms − 1(i)
=C

AM

D
N

i=1
dmi

ms(i)
(B.6)

and

AM=3(m1,..., mN) | mj= ± 1/2, -j and C
N

j=1
mj=M4 . (B.7)

To evaluate gM(s) for s taken in the class of conjugated elements charac-
terized by a sequence {al, l=1,..., N}, we first recall that for given M,
N/2 − M indices mi have the values − 1/2, the other N/2+M indices have
the values +1/2. The factor

D
N

i=1
dmi

ms(i)
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is non-zero if and only if the group element s permutes only indices i of
mi’s possessing the same value. This implies that there exist integers
bl, l=1,..., N with 0 [ bl [ al such that

C
N

l=1
lbl=

N
2

− M.

Adopting the usual convention 0!=1, the number of sequences
{m1,..., mN} satisfying the above condition becomes

D
N

l=1
Cbl

al
— D

N

l=1

al!
(al − bl)! bl!

,

and thus we get

gM(s)= C
BM(s)

1D
N

l=1
Cbl

al
2 (B.8)

with

BM(s)=3(b1,..., bl) : 0 [ bl [ al, l=1,..., N and C
N

l=1
lbl=

N
2

− M4 . (B.9)

Using the theorem of residues we can write

gM(s)= C
BM(s)

1
2pi

F
C0

<N
l=1 (Cbl

al
z lbl)

zN/2 − M

dz
z

=
1

2pi
F

C0

<N
l=1 (1+z l)al

zN/2 − M

dz
z

. (B.10)

Inserting this expression on the right-hand side of Eq. (B.5), we obtain
(B.2).

Now, to prove the properties (3.3.10), we have to evaluate

alŒ=
1

N!
C

s ¥ SN

qlŒ(s)a q[N − 1, 1](s) ql(s) (B.11)

with l=[l1, l2] and lŒ=[l −

1, l −

2]. Clearly, we may assume N > 1. Then,
in the particular case l=[N], which corresponds to l2=0, and where
ql(s)=1 for all s ¥ SN, we have

alŒ=d[N − 1, 1]
lŒ , -lŒ ¥ L for l=[N], (B.12)
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which follows immediately from the orthogonality relation for the charac-
ters. Similarly, we get for l −

2=0

a[N]=d[N − 1, 1]
l , -l ¥ L for lŒ=[N]. (B.13)

The results (B.11) and (B.12) prove the validity of the relation (3.3.10) for
l2=0 and/or l −

2=0. Now we consider the case l2 > 0 and l −

2 > 0. To
evaluate alŒ given by Eq. (B.11), we first note that the number of conju-
gated elements in the class characterized by the sequence {al, l=1,..., N}
satisfying the condition (B.1) is equal to

N!
<N

l=1 lalal!
.

Moreover, from Eq. (B.2) we obtain immediately

q[N − 1, 1](s)=a1 − 1, -s ¥ SN. (B.14)

Thus, using the relation (B.2) we can rewrite the right-hand side of
Eq. (B.11), which becomes

alŒ=
1

(2pi)3 C
N

a1,..., aN=0
F

C0

dz
z

F
C0

dzŒ

zŒ
F

C0

du
u

(1 − z)(1 − zŒ)

zl2zŒ
l

−

2

a1 − 1
uN

× D
N

l=1

3 1
al!

1 (1+z l)(1+zŒ
l) u l

l
2al 4 . (B.15)

Condition (B.1) is satisfied, since the term

1
2pi

F
C0

du
u

1
uN D

N

l=1
{(u l)al}

becomes zero if it is not satisfied, otherwise it is equal to 1. For the same
reason, we may extend the summations in Eq. (B.15) over a1,..., aN up to
infinity. After Taylor expansion of the exponential and using

C
.

a1=0

a1 − 1
a1!

[(1+z)(1+zŒ) u]a1

=[(1+z)(1+zŒ) u − 1] exp[(1+z)(1+zŒ) u]
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we then get

alŒ=
1

(2pi)3 F
C0

dz
z

F
C0

dzŒ

zŒ
F

C0

du
u

×
(1 − z)(1 − zŒ)[(1+z)(1+zŒ) u − 1]

zl2zŒ
l

−

2uN
exp 3 C

N

l=1

1 (1+z l)(1+zŒ
l) u l

l
24 .

(B.16)

The summation over l in the exponential can be extended to infinity, since
the extra terms l > N do not contribute to the residue of the integrand at
u=0. With the identity

C
.

l=1

(1+z l)(1+zŒ
l) u l

l
=ln 3 1

(1 − u)(1 − uz)(1 − uzŒ)(1 − uzzŒ)
4

we get from Eq. (B.16)

alŒ=
1

(2pi)3 F
C0

dz
z

F
C0

dzŒ

zŒ
F

C0

du
u

(1 − z)(1 − zŒ)[(1+z)(1+zŒ) u − 1]

zl2zŒ
l

−

2uN(1 − u)(1 − uz)(1 − uzŒ)(1 − uzzŒ)
.

(B.17)

The integral is easily evaluated using Cauchy’s theorem. The integrand is a
meromorphic function of u with asymptotic behavior O(u−N − 4). Thus, the
sum over the residues at u=0, u=1, u=1/z, u=1/zŒ, and u=1/(zzŒ) is
equal to zero, and the residue at u=0 can be determined from the residues
at u=1, u=1/z, u=1/zŒ, and u=1/(zzŒ). The latter have the values

−
z+zŒ+zzŒ

zl2+1zŒ
l

−

2+1(1 − zzŒ)
at u=1

zN+1 − l2(zzŒ+zŒ+1)

(z − zŒ) zŒ
l

−

2+1
at u=1/z

zŒ
N+1 − l

−

2(zzŒ+z+1)
(zŒ − z) zl2+1 at u=1/zŒ

zN+1 − l2zŒ
N+1 − l

−

2(z+zŒ+1)
1 − zzŒ

at u=1/(zzŒ).

The residues at u=1/z, u=1/zŒ, and u=1/(zzŒ) do not contribute to the
integral in Eq. (B.17), since they possess no first-order poles at z=0

450 Reuse et al.



or/and zŒ=0. The only non-vanishing contribution is due to the residue at
u=1, which yields

alŒ=−
1

(2pi)2 F
C0

dz
z

F
C0

dzŒ

zŒ

z+zŒ+zzŒ

zl2+1zŒ
l

−

2+1(1 − zzŒ)

=
1

(2pi)
F

C0

dz
z
11

z
+z+12 zl

−

2 − l2, (B.18)

where we have again used Cauchy’s theorem to evaluate the integral over zŒ.
For l2 > 0 and l −

2 > 0 we obtain finally

alŒ=˛1 if |l −

2 − l2 | [ 1
0 otherwise.

(B.19)

This together with Eqs. (B.12) and (B.13), proves the result (3.3.10) for the
multiplicities.
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